On Monday July 6th, the nanoHUB will be intermittently unavailable due to scheduled maintenance. We apologize for any inconvenience this may cause. close

Support

Support Options

Submit a Support Ticket

 
Error
  • JFolder: :files: Path is not a folder. Path: /www/nanohub/site/resources/2005/05/00001/slides

Dynmical Models for Thermopower

By Giulio Casati

Center Complex Systems, University of Insubria-Como, Como, Italy

Published on

Abstract

Dynamical nonlinear systems provide a new approach to the old problem of increasing the efficiency of thermoelectric machines. Here we discuss stylized models of classical dynamics, including non interacting complex molecules in an ergodic billiard, a disordered hardpoint gas and systems with broken time-reversal symmetry where the Curzon-Ahlborn limit for efficiency at maximum power can be overcome . The main focus will be on the physical mechanisms, unveiled by these dynamical models, which lead to high thermoelectricefficiency approaching the Carnot limit.

Bio

Giulio Gasati Giulio Casati is Professor of Theoretical Physics, University of Insubria-Como and Director of the “Centre for Nonlinear and Complex Systems.” He has worked on classical and quantum chaos, nonlinear dynamics and complex systems, transport phenomena, quantum computing , statistical physics, and theoretical physics. He has published over 250 papers in scientific international journals. He is a member of the Academia Europaea; co-ordinator of the UE Networks on “Quantum Transport on an Atomic Scale” “Effects of decoherence and imperfections for quantum information processing,” Associate Editor of the Journal “Random Operators and Stochastic Equations” and Associate Editor of the International Journal “Chaos, Solitons and Fractals.” He received Enrico Fermi Prize in 2008 and the International prize for Physics for 2010- Accademia Nazionale dei Lincei.

Cite this work

Researchers should cite this work as follows:

  • Giulio Casati (2012), "Dynmical Models for Thermopower," https://nanohub.org/resources/13829.

    BibTex | EndNote

Time

Location

Birck Nanotechnology Building, Room 1001, Purdue University, West Lafayette, IN

Tags

Oops, We Encountered an Error.

Use the error messages below to try and resolve the issue. If you are still unable to fix the problem report your problem to the system administrator by entering a support ticket.

  1. Unable to find presentation.

nanoHUB.org, a resource for nanoscience and nanotechnology, is supported by the National Science Foundation and other funding agencies. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.