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• Next lecture we will move onto 
the topic of sub-bands, in this 
lecture we will continue our 
general discussion of 
bandstructure.

• To summarize
Whenever there exists 

periodicity in a solid, there 
will be periodicity in the 
Hamiltonian Matrix of that 
solid.

This fact may be used to 
simplify eigenvalue
calculations.

• The simplified eigenvalue matrix is

where a given unit cell “n” is summed over 
all neighboring “m” unit cells

• In 1D our “n” and “m” unit cells are

• The size of           depends on the number 
of basis functions per unit cell.  
i.e. - b basis functions per unit cell gives a 
bxb            matrix 
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• Previously, we went through the 2-
D structure of graphite

• The “one” atom unit cell was not 
sufficient, a unit cell of two atoms 
had to be constructed

• We used the unit vectors       and        
, such that any site may by 

located by

(m and n are integers)

• In general one might use 4 basis 
orbitals per carbon atom (8 per unit 
cell).  However, for graphite, as shown 
last time, we can get away with simply 
using the pz orbital because it 
encompasses most of the optical and 
electrical properties of graphite.  
Nonetheless, even for graphite, to 
describe the full range of carbon-carbon 
bonding energetics one must use at 
least the first four basis orbitals (s, px, 
py, pz).  

• Note: 4 orbitals x 2 atoms per unit cell 
gives an 8 x 8 ( )[ ]kh
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• So, using only pz an analysis of 
graphite gives (see last time)…

where
and t ≈ 2.5eV for C-C bonds

• Unit vectors are defined as:

• This same methodology can be extended 
into 3 dimensions to describe semi-
conductor bandstructure.
• All common semiconductors have a 
diamond lattice structure consisting of 2 
interpenetrating face centered cubic (fcc) 
atomic lattices
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• The basis vectors are:

Note: with two interpenetrating FCC lattices the 
spacing between the atoms in each unit cell is 
(a/4,a/4,a/4)
• Using 4 (s3p) or 5 (s3ps*) basis orbitals we 
can describe the bandstructure of common 
semiconductors following the same 
methodology shown for graphite.  Namely, 
looking at basis orbital overlap with nearest 
neighbor atoms to derive          and from          
solving for the eigenvalue energies that provide 
the familiar bandstructure
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• Next, a very important 
concept… consider where 
the Fermi energy is in 
relation to the energy levels
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• Recall, for a simple 1D 
solid we get a band diagram 
something like:

Semiconductors, and on to 
Band Filing
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• In general, if we have N lattice 
points in a solid then there will be 
a resulting N values along the k-
axis between (-π/a, π/a).  So a 1D 
diagram of the form

Will have 2N energy levels to hold 
electrons (spin included)

• The position of the Fermi energy is 
determined by the number of electrons.  
Likewise, the position of the Fermi energy 
determines the conduction/insulation 
properties of a solid.  For example…

- Conductor, 
N electrons:

- Insulator, 
2N electrons:
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• Look at another example, take a 
lattice with 2 atoms per unit cell 
and 1 electron per atom.  
Therefore, given N lattice sites we 
have 2N electrons and the Fermi 
energy appears between the 
valence and conduction bands.
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2 atoms/unit cell, 1 Basis fcn/atom

• Importantly, the energy gap between the 
conduction and valence bands, G, 
determines the conduction properties of 
the material. Big gap results in an insulator 
while a small one results in a conductor.

• Now move onto a discussion of k-space.  
A question often asked, where is the 
Brillouin Zone?

• Important point:
is equal to         for all n. 

Now, let’s 
consider the 2-D 
square lattice,

The k-space Brillouin zone is…

( )naakie π2+

a
a

iknae

Conduction Properties and 
on to k-space

16:00



• However, Brillouin Zone structure 
becomes more abstract for more 
complex 2-D and 3-D lattice structures
• In general, given a real-space basis of 
the form
(m, n and p are integers)
we form the reciprocal k-space such 
that

Brillouin
Zone

π/a-π/a

-π/a

π/a

Real-Space:

k-Space:

x

x
-π/a π/a0

a

• For 1-D we have:

…a non-trivial example is that of 
semiconductors.  The FCC real-
space lattice of semiconductors 
produces a BCC (Body Centered 
Cubic) lattice in reciprocal space.  
Diagram on next slide

Square lattice 
Brillouin Zone
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FCC in Direct Lattice to BCC in reciprocal Lattice 

FCC in Real Space BCC in 
Reciprocal Space

Brillouin Zone in 
Reciprocal Lattice

111

100

110

FCC Lattice to BCC 
Reciprocal Lattice
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Recall basis vectors in Direct lattice of graphite:

• To get the basis vectors in the reciprocal space we use:

• Using 1, 
we have:
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• Thus, the reciprocal lattice and Brillouin 
zone of graphite look like:

• Now, we know from previous 
lectures that if we plot in a particular 
k-direction we get a diagram 
something like:
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• So: “Where exactly are these 
conduction points in the (kx,ky) 
plane?
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• We know that E = E0 ± |h0|, therefore our 
conduction points occur at |h0| = 0, or 
simply h0 = 0.  So,

This occurs for the following coordinates:
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• On the (kx,ky) plane these points 
appear at the six corners of the 
Brillouin zone.

• Often we refer to these 
conduction points as “Γ” valleys 
which control the conduction 
properties.
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• Does this mean that there are 6 
valleys?  NO! In reality, each corner of 
the Brillouin Zone only contributes 1/3rd

of a conduction point.  Each 1/3rd is 
associated to its other 2/3rds by 2 lattice 
unit vectors.  For example:

• Perhaps a simpler way to think 
about it is to consider a point at the 
boundary of a 1-D Brillouin Zone…

• Is this 1 or 2 valleys?  Clearly, it is 
one and the same point, since they 
are separated by a distance of 2π/a.  
So we can think of the points on the 
graph as two ½ points (½ + ½ = 1) !
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Next Lecture: Start Sub-Bands

Two Full Valleys

How Many Conduction 
Points
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