.- '. et
QAo Taanspor;:
@ g F

Network for Computational Nanotechnology
nanoHUB
online

simulations and more




* Next lecture we will move onto
the topic of sub-bands, in this
lecture we will continue our
general discussion of
bandstructure.

* To summarize
- Whenever there exists
periodicity in a solid, there
will be periodicity in the
Hamiltonian Matrix of that
solid.

- This fact may be used to
simplify eigenvalue
calculations.

* The simplified eigenvalue matrix is

[h(E)]z Zm: [Hnm ]ei/z. d,-d,)

[19eg 1]

where a given unit cell “n” is summed over
all neighboring “m” unit cells

* In 1D our “n” and “m” unit cells are

< a->
¥ ——K - - - - - -
m n m

* The size of } ]E) depends on the number
of basis functions per unit cell.
i.e. - b basis functions per unit cell gives a

bxb [h (]E )] matrix




* Previously, we went through the 2-
D structure of graphite

* The “one” atom unit cell was not
sufficient, a unit cell of two atoms
had to be constructed

- We used the unit vectors @, and
a, such that any site may by
located by

—_

R =ma, +na,

(m and n are integers)

* In general one might use 4 basis
orbitals per carbon atom (8 per unit
cell). However, for graphite, as shown
last time, we can get away with simply
using the p, orbital because it
encompasses most of the optical and
electrical properties of graphite.
Nonetheless, even for graphite, to
describe the full range of carbon-carbon
bonding energetics one must use at
least the first four basis orbitals (s, p,,

Py, P,).

» Note: 4 orbitals x 2 atoms per unit cell
gives an 8 x 8 [1 (i )]




* S0, using only p, an analysis of
graphite gives (see last time)...

EO hO*
hO EO

Where ho _ t(l_l_ei/;-ﬁ] _I_eilg-ﬁz)

and t = 2.5eV for C-C bonds
« Unit vectors are defined as:
a, =ax+by =%ac_cfc+@éac_cf/

= A_ /\_3 /\_\/3 ~
a,=ax—by=%a, X 4ac_cy

- This same methodology can be extended
into 3 dimensions to describe semi-
conductor bandstructure.

» All common semiconductors have a
diamond lattice structure consisting of 2
interpenetrating face centered cubic (fcc)
atomic lattices




Next, a very important

oncept... consider where

he Fermi energy is in
relation to the energy levels

» The basis vectors are:

571:(32"');)%
52:(334'2)%
a, = (+:2)g

Note: with two interpenetrating FCC lattices the
spacing between the atoms in each unit cell is
(a/d,ald,al4)

» Using 4 (s3p) or 5 (s3ps*) basis orbitals we
can describe the bandstructure of common
semiconductors following the same
methodology shown for graphite. Namely,
looking at basis orbital overlap with nearest
neighbor atoms to derive h(k) and from h(k)
solving for the eigenvalue energies that provide
the familiar bandstructure
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» Recall, for a simple 1D
solid we get a band diagram
something like:




- In general, if we have N lattice
points in a solid then there will be
a resulting N values along the k-
axis between (-11/a, m/a). So a 1D
diagram of the form
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Will have 2N energy levels to hold
electrons (spin included)

 The position of the Fermi energy is
determined by the number of electrons.
Likewise, the position of the Fermi energy
determines the conduction/insulation
properties of a solid. For example...

- Conductor,
N electrons:

- Insulator,
2N electrons:




- Look at another example, take a
lattice with 2 atoms per unit cell
and 1 electron per atom.
Therefore, given N lattice sites we
have 2N electrons and the Fermi
energy appears between the
valence and conduction bands.

2 atoms/unit cell, 1 Basis fcn/atom

Conduction

Valence Band

 Importantly, the energy gap between the
conduction and valence bands, G,
determines the conduction properties of
the material. Big gap results in an insulator
while a small one results in a conductor.

- Now move onto a discussion of k-space.
A question often asked, where is the
Brillouin Zone?

* Important point: o
pi(k+27/a)na s equal to €™ for all n.

Now, let’'s
consider the 2-D
square lattice,

The k-space Brillouin zone is...




Brillouin
Zone

T/a > Real Space:

7\5 ﬂ( XK — X

« However, Brillouin Zone structure

becomes more abstract for more

complex 2-D and 3-D lattice structures

* In general, given a real-space basis of

theform R = ma, + na, + pa, ...a non-trivial example is that of
(m, n and p are integers) semiconductors. The FCC real-
we form the reciprocal k-space such space lattice of semiconductors
that produces a BCC (Body Centered

K = M,Z[1 + N?l2 +PZI3 and|4.-a ) Cubic) lattice in reciprocal space.
Diagram on next slide
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Recall basis vectors in Direct lattice of graphite:

c_il =ax—+ by — % ac—cx + [% ac—cy

a,=ax—by=%a, X Aac_cy
673 =Z Perpendicular to the plane of paper -

- To get the basis vectors in the reciprocal space we use: A4 5 -,

« Using 1,
we have:




L —
ReciprocaTGrath%

 Thus, the reciprocal lattice and Brillouin
zone of graphite look like:

(0, 21/3b)
/ o

« (m/a, m/3b)

- Now, we know from previous
lectures that if we plot in a particular
k-direction we get a diagram

something like:

Conduction

4

A

Conduction
Point

l

filled states

» So: “Where exactly are these
conduction points in the (k,,k,)

plane?




« We know that E = E % |h,|, therefore our
conduction points occur at |hy| = 0, or
simply h, = 0. So,

h, = t(l +eta 4 e’“z)
= t[l et (e”kyb +e " )]
=0

1+ 2e™* cos k,b=0

This occurs for the following coordinates:

027 o254} ny)
+7z,Jf3) (—ﬂ%) (—”%)

* On the (k,.k,) plane these points
appear at the six corners of the
Brillouin zone.

o
4 ky L Conduction Pointsj\

"k

X

# Brillouin Zone
N Y

« Often we refer to these
conduction points as “I"” valleys
which control the conduction
properties.

\




« Does this mean that there are 6
valleys? NO! In reality, each corner of
the Brillouin Zone only contributes 1/3m
of a conduction point. Each 1/3 is
associated to its other 2/3ds by 2 |attice
unit vectors. For example:

Two Full Valleys

« Perhaps a simpler way to think
about it is to consider a point at the
boundary of a 1-D Brillouin Zone...

K

Point

%

/
* Is this 1 or 2 valleys? Clearly, it is
one and the same point, since they
are separated by a distance of 21/a.

So we can think of the points on the
graph as two Yz points (2 + /2=1) !

Next Lecture: Start Sub-Bands
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