Landau In Search of a Better MEMS Switch How nanostructured dielectrics soften Ianding, increase travel Range, and reduce Energy dissipation

> Muhammad A. Alam Ankit Jain, and Sambit Palit <u>alam@purdue.edu</u>

copyright 2012

This material is copyrighted by M. A. Alam under the following Creative Commons license.

Attribution-NonCommercial-ShareAlike 2.5 Generic (CC BY-NC-SA 2.5)

Conditions for using these materials is described at

http://creativecommons.org/licenses/by-nc-sa/2.5/

'More than Moore' Technologies

MOSFET, MEMS, and ISFET

Applications of MEMS Switches

I. Communication

RF-MEMS Switch

3. Optics

Deformable Mirrors

2. Computation

NEMFET

4. Biosensor

Resonator / Mass Sensor

5

Active and Passive Displays

IPAD

Newton/Hooke

P.Vukusik, PW, 2004

MEMS and Mirasol Display

Physics of switch closing Tunability of the physical spacing MEMS as a Landau switch

Outline

- Introduction to More than Moore Technology
- Elementary Physics of MEMS
- Theory of Soft Landing
- Physics of Travel Range
- Hysteresis-Free Switching
- Conclusions

Taylor, PRS, 1968

Mechanical model for cantilever movement

Many Puzzles of MEMS C-V

F_s Asymmetry in Pull-in and Pull-out Voltages

Energy Landscape of MEMS Transition

Order parameter y, ...in other system M or P are order parameter Sub kT transition is fundamentally related to absence of states in the gap

MEMS, 1st order Phase Transition, Cusp Catastrophe

Is there a 2st order Phase Transition in MEMS? Physics of Bows and Arrows

Q. Wang, J. Colloid and Itf. Sci. v. 458(2), 491, 2011

Euler Buckling, 2st order Phase Transition, Fold Catastrophe

Symmetry breaking, power-law expansion of the order parameter ...

Outline

- Introduction to More than Moore Technology
- Elementary Physics of MEMS
- Theory of Soft Landing
- Physics of Travel Range
- Hysteresis-Free Switching
- Conclusions

Reliability: The problem of Hard Landing

$$m\frac{d\upsilon}{dt} = k(y_0 - y) - F_{elec} - b\upsilon$$
$$F_{elec} = \frac{l}{2}\frac{d}{dy}(CV^2)$$

A. Jain et.al., APL, 98, 234104 (2011)

The hard landing damages the surface and can lead to stiction ...

Soft Landing by Resistive Braking

y₀

y_d

t_{PI} (µs)

Operation: Geometry and Capacitance

$$F_{elec} = \frac{l}{2} \frac{d}{dy} \left(CV^2 \right) = \frac{l}{2} V_c^2 \frac{dC}{dy}$$

$$C_{up} = Ay^{-1}$$

Before Pull-in

 $C_{down} = A(y) \times y^{\alpha} \Box C_{up}$

Close to contact

Soft Landing by Capacitive Braking

У₀

y_d

Patterning is Widely used ...

Outline

- Introduction to More than Moore Technology
- Elementary Physics of MEMs
- Theory of Soft Landing
- Physics of Travel Range
- Hysteresis-Free Switching
- Conclusions

... depositing precise amount of charge could be difficult?!

Manipulating stability point: Sculpting the Electrode

 $F_{E} = F_{M}$ $dF_{E}/dy = dF_{M}/dy$ $y \sim y_{0}/2$

Shaping the 2D e-field ...

Geometry allows tailoring of the critical gap !

Manipulating stability point: Fractal Sculpting of the Electrode

$$C(\mathbf{y}) = \alpha \mathbf{y}^{-n} = \alpha \mathbf{y}^{-(D_F - 1)}$$

$$k(y_0 - y) = F_{elec} = \frac{1}{2} V^2 \alpha y^{-(n+1)}$$

$$y_c = \frac{1+n}{2+n} = \frac{D_F}{D_F + 1}$$

 $y_c=2/3$ for planar electrode $y_c=1/2$ for cylindrical electrode $y_c=0!$ for spherical electrode

Taylor, soup bubble and cloud formation

Outline

- Introduction to More than Moore Technology
- Elementary Physics of MEMs
- Theory of Soft Landing
- Physics of Travel Range
- Hysteresis-Free Switching
- Conclusions

Hysteresis and Power Dissipation

Is hysteresis free MEMS operation possible?

Origin of Hysteresis Loss

Conclusions: MEMS & Nanostructured Electrodes

Geometrization of Electronic Devices:

www.ncn.purdue.edu/workshops/2009summerschool

Conclusions: Future of CMOS+ Technology

References

• H. Torun, APL, 91, 253113, 2007. Spring constant tuning of active atomic force microscope.

G. Taylor, The coalescence of closely space drops" Proc. Roy. Soc. A, 306, 423, 1968. As a model for spherical electrodes in the MEMs configuration.

http://www.memtronics.com/page.aspx?page_id=15 (Goldsmith dimpled structure)

http://www.memtronics.com/files /Understanding%20and%20Improving%20Longev ity%20in%20RF%20MEMS%20SPIE%206884-1.pdf

http://www.google.com/patents?hl=en&lr=&vid=USPATAPP11092462&id=BEeZAA AAEBAJ&oi=fnd&dq=muldavin+switch+dimpled&printsec=abstract#v=onepage&q &f=false

(corrugated top electrode).