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‘More than Moore’ Technologies 



MOSFET, MEMS, and ISFET 
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Applications of  MEMS Switches 
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1. Communication 

RF-MEMS Switch 

2. Computation 

NEMFET 

4. Biosensor 

Resonator / Mass Sensor 

3. Optics 
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Active and Passive Displays 
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MEMS and Mirasol Display 
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Physics of switch closing 
Tunability of the physical spacing 
MEMS as a Landau switch 



Outline 

• Introduction to More than Moore Technology 
• Elementary Physics of MEMS 
• Theory of Soft Landing  
• Physics of Travel Range 
• Hysteresis-Free Switching 
• Conclusions 
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Taylor, PRS, 1968 



Mechanical model for cantilever movement 

9 

= − − −
2

( 02 ) ( )elec down

d y dy
m k y y b

dt
F

dt

damping Spring 
force 

Net 
force 

MATLAB simulation 

( )
ε ε

ε
=

+
(

2 2
0

2)
2

r
elec dow

r

n

d

AV

y y
F

Why does it snap?  

Gate



Many Puzzles of MEMS C-V 

Pull-In 

Pull-Out 
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Source of instability 
 
Point of instability 
 
Geometry of instability 
 
Energy dissipation 
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Fs, FE 

Asymmetry in Pull-in and Pull-out Voltages 
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Energy Landscape of MEMS Transition 
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Order parameter y,  …in other system M or P are order parameter 
Sub kT transition is fundamentally related to absence of states in the gap 
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MEMS, 1st order Phase Transition, Cusp Catastrophe 
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Is there a  2st order Phase Transition in 
MEMS? Physics of Bows and Arrows 
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Q. Wang, J. Colloid and Itf. Sci.   
v. 458(2), 491, 2011 
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Euler Buckling, 2st order Phase Transition, 
Fold Catastrophe 
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Symmetry breaking,  power-law expansion of the order parameter … 



Outline 

• Introduction to More than Moore Technology 
• Elementary Physics of MEMS 
• Theory of Soft Landing 
• Physics of Travel Range 
• Hysteresis-Free Switching 
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Reliability: The problem of Hard Landing 
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A. Jain et.al., APL, 98, 234104 (2011) 



Soft Landing by Resistive Braking   
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Operation: Geometry and Capacitance 
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Soft Landing by Capacitive Braking   
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Patterning is Widely used … 
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• Introduction to More than Moore Technology 
• Elementary Physics of MEMs 
• Theory of Soft Landing 
• Physics of Travel Range 
• Hysteresis-Free Switching 
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Charge Controlled Arbitrary Travel Range 
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 … depositing precise amount of charge could be difficult?! 
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Manipulating stability point:  
Sculpting the Electrode  
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Geometry allows tailoring of the critical gap ! 



Manipulating stability point:  
Fractal Sculpting of the Electrode  
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Taylor, soup bubble and cloud formation 
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Below pull-in Above pull-in 

Travel range > 0.5 !  

… when he was 82 years old!  
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Hysteresis and Power Dissipation 

Is hysteresis free MEMS operation possible?  
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Conclusions: MEMS & Nanostructured 
Electrodes 
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Geometrization of Electronic Devices: 
www.ncn.purdue.edu/workshops/2009summerschool  



Conclusions: Future of CMOS+ Technology 

32 

Bio 
Sensors 

Carbon  
NanoNet 

OPV 

GateS D
FET (logic) Negative C 

RRAM 
PCM 
FeRAM 

Gate

SRAM (Memory) 

vin 

vo 

Boltzmann Switch Landau Switch 



References 
• H. Torun, APL, 91, 253113, 2007. Spring constant tuning of active atomic force 

microscope. 
G. Taylor, The coalescence of closely space drops" Proc. Roy. Soc. A, 306, 423, 
1968. As a model for spherical electrodes in the MEMs configuration.  
 
http://www.memtronics.com/page.aspx?page_id=15   (Goldsmith dimpled 
structure) 
http://www.memtronics.com/files  /Understanding%20and%20Improving%20Longev
ity%20in%20RF%20MEMS%20SPIE%206884-1.pdf 
http://www.google.com/patents?hl=en&lr=&vid=USPATAPP11092462&id=BEeZAA
AAEBAJ&oi=fnd&dq=muldavin+switch+dimpled&printsec=abstract#v=onepage&q
&f=false 
(corrugated top electrode).  

33 


	In Search of a Better MEMS Switch �How nanostructured dielectrics soften �landing, increase travel Range, and reduce Energy dissipation ��Muhammad A. Alam  �Ankit Jain, and Sambit Palit�alam@purdue.edu��
	copyright 2012
	‘More than Moore’ Technologies
	MOSFET, MEMS, and ISFET
	Applications of MEMS Switches
	Active and Passive Displays
	MEMS and Mirasol Display
	Outline
	Mechanical model for cantilever movement
	Many Puzzles of MEMS C-V
	Asymmetry in Pull-in and Pull-out Voltages
	Energy Landscape of MEMS Transition
	MEMS, 1st order Phase Transition, Cusp Catastrophe
	Is there a  2st order Phase Transition in MEMS? Physics of Bows and Arrows
	Euler Buckling, 2st order Phase Transition, Fold Catastrophe
	Outline
	Reliability: The problem of Hard Landing
	Soft Landing by Resistive Braking  
	Operation: Geometry and Capacitance
	Soft Landing by Capacitive Braking  
	Patterning is Widely used …
	Outline
	Charge Controlled Arbitrary Travel Range
	Manipulating stability point: �Sculpting the Electrode 
	Manipulating stability point: �Fractal Sculpting of the Electrode 
	Taylor, soup bubble and cloud formation
	Outline
	Hysteresis and Power Dissipation
	Origin of Hysteresis Loss
	Hysteresis-free geometry with minimum dissipation
	Conclusions: MEMS & Nanostructured Electrodes
	Conclusions: Future of CMOS+ Technology
	References

