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• In this lecture the concept of 
subbands shall be introduced

• Often we are interested in low 
dimensional structures such as 
carbon nano-tubes.  A low 
dimensional structure is that for 
which one or more dimension is 
very small.

• For the most part, if one or 
more dimension is on the nm 
scale (≈100 atoms) the 
conventional E-k diagram is not 
sufficient

• In the succeeding lecture we will discuss 
how reducing a bulk solid to a low 
dimensional structure results in energy 
subbands and discrete energy levels which 
lead to qualitative differences and 
observable experimental quantities like 
density of states (DOS)

• The carbon nano-tube provides a 
particularly good illustration of the 
subbands because while a sheet of 
graphite (in x-y plane) is constraint in the z 
direction and has infinite wall Boundary 
Condition (B.C.), it can be rolled up to a 
nano-tube and be constraint in another 
dimension with ‘REAL’ periodic B.C.
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• Remember, graphite has the 
structure

where,

• The E-k diagram can be 
sound by

with eigenvalues E = E0 ± |h0|

• So, plotted along the ky line we get an 
energy curve like

• With the 
conduction 
valleys 
appearing 
at the corners 
of the graphite 
Brillouin Zone…
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• Recall, the six Brillouin valleys 
really only give 2 independent 
valleys, e.g. in each group of 3 
that are in the picture two of the 
valleys are away form the other 
by a reciprocal lattice unit 
vector; hence represent the 
same state. One can think that 
each corner in the 1st Brillouin 
zone contributes 1/3rd.1/3 x 6 = 
2(Left). Alternatively we can 
translate two of the corners in 
each group to get the full 
valleys on the right.

Points 1 and 2 are separated by 2π/a, so they really are one and the same point.  
Graphically, we visualize 1 and 2 as ½ points in k-space
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• When we roll up graphite we 
get carbon nano-tube and in the 
process  we constrain the 
already 1-D constraint sheet (in 
the z direction) yet in another 
dimension. Different ways of 
rolling will result in different E-k 
diagrams.
• An initial simple example is to 
roll in  the     direction.  For 
instance, create a tube with 
circumference 2a:
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• We use the circumferential vector to
denote the direction and length.  Here,

but in general
where m is an integer. This will result in 
‘REAL” periodic B.Cs because each point on 
graphite will coincide with a similar one after 
being rolled up. (Notice that the magnitude 
of       gives you the circumference of a 
cross section of the tube hence the name 
circumferential vector.)
• The periodic B.C along the circumference 
requires that (   is an integer)

• For the provided example, we have:

• Here kx’s are series lines parallel to ky.
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subbands
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Carbon Nano-tube kx Subbands

• This is how constraints along a given 
dimension result in subbands.  Note: 
For carbon nano-tubes with a very 
large circumference, the number of 
subbands in the Brillouin Zone can be 
so great that its behavior is 
indistinguishable from that of graphite

• Along the ky-axis the first two kx
subbands look like

• For v = 1 and v = 0 the Fermi 
energy lies above the valence band.  
Note: Only subbands passing 
through  conduction valleys in the 
Brillouin Zone corners
conduct, such as v = 0,the others 
will either semi-conduct or insulate
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• It is possible to fold a nano-tube 
such that it has no subband 
passing thought the conduction 
valleys (i.e.. by folding in the     
direction) 
• For the most part only two types 
of folding are of interest.  The 
first, a fold in the    direction 
resulting in the zig-zag nano-tube 

since the circumferential edge 
looks like a zig-zag.  The second, 
a fold in the    direction resulting 
in the arm-chair nano-tube

• A fold in the    direction has the 
circumferential vector                      , 
where m is an integer, and the resulting 
subbands look something like…ŷ

ŷ

x̂

ŷ
ymbc ˆ2=v

ky

kx

• A nano-tube will only conduct if one 
of its subbands pass through the six 
corners of the Brillouin Zone. So 
condition for conduction is  

Therefore a zig-zag nano-tube will be 
like a conductor iff m is a multiple of 3!
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• In general, it is possible to fold a 
carbon nano-tube along any 
circumferential vector of the form

•where m and n are integers, and 
(m – n) must be a multiple of 
three in order for metallic 
properties to exist

21 anamc vvv +=

ky

kx

Subbands in direction 21 anamc vvv +=

• As stated earlier, subbands discretize k-
space and lead to a finite number of E-k 
diagrams corresponding to specific values 
of v.  In general we are most concerned 
with the behavior of a material near the 
Fermi level, so we consider the dispersion 
relations along  each subband close to this 
level.
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• How do we look at this process of 
dimensional confinement in a general 
manner?  Where does the carbon 
nano-tube fit in?

Consider the well known bulk solid

without any constraints, very long, 
wide and deep.  It has a general E-k 
behavior expressed by the function 
E(kx, ky, kz) but if we constrain the 
bulk solid in one direction, say kz, to a 
comparably short length, Lz, we get 
what is known as a quantum well and 
kz will be forced to have discrete 
values.

• Assuming periodic boundary conditions 
for Lz, we get  kz = (v2π) / Lz  and our E-
k function is Ev (kx, ky) = E(kx, ky, 
kz=(2πv)/Lz) (where v is an integer)
• Similarly, constraining along the ky
direction results in a quantum wire

• For the quantum wire we have ky =
(v΄2π)/Ly and the E-k function

Note: a carbon nano-tube is really, in 
the general sense, a form of quantum 
wire! 
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• Finally, confinement in the x-direction 
as well leads to a quantum dot

• The quantum dot has kx = (v΄΄2π)/Lx
such that the E-k behavior is given by

The quantum energy levels are 
discretized in the same way as those of 
an atom and so quantum dots are often 
referred to as artificial atoms
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• One important question, when 
do constraints lead to 
experimental observables?
Essentially, quantization must be 
compared to thermal energy kBT.  
Because the thermal energy 
tends to smooth out the difference 
between energy levels, the 
discretization corresponding to 
kx/y/z = (q2π)/Lx/y/z must be bigger 
than or comparable to kBT to 
experimentally show itself.

Note: this is often the motivation 
for conducting experiments at 
very low temperatures
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More on Dimensional 
Confinement
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• Usually, it is necessary to derive 
an expression for E(kx, ky, kz) about 
the conduction points of a bulk solid

• For silicon, use the parabolic 
approximation

where m* is the effective mass.  And 
with z confinement, we get an 
expression for the quantum well with 
the dispersion relation:
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Approximation

• For nano-tubes we can derive a similar 
parabolic expression via a Taylor series 
expansion that approximates the 
subbands near the conduction valleys

An Approximate 
Expression for E(kx, ky, kz)
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• In carbon nano-tubes recall the 
expression for energy E = E0 ± h0, where

• So, to approximate the energy 
expression we Taylor expand h0 about the 
conduction valleys 
(kx,ky) = (0, ±(2π)/3b)
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• Thus,

• This parabolic expression, just 
as with silicon, provides a good 
model of the conduction 
properties of graphite and the 
descretized carbon nano-tubes 
(e.g. Let ky = v2π/2mb)

• Furthermore, this model 
accurately estimates conduction 
characteristics for folding in any 
direction.
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• Commonly, the carbon nano-
tube E-k diagrams, about the 
conduction points, given by this 
model look like
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Next Lecture: Density of States (DOS)
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