

Lecture 20: Subbands: Quantum Wells, Wires, Dots and Nanotubes Ref. Chapter 6.1



nanoHUB
online simulations and more

Introduction

00:00

- In this lecture the concept of subbands shall be introduced
- Often we are interested in low dimensional structures such as carbon nano-tubes. A low dimensional structure is that for which one or more dimension is very small.
- For the most part, if one or more dimension is on the nm scale (≈100 atoms) the conventional E-k diagram is not sufficient

- In the succeeding lecture we will discuss how reducing a bulk solid to a low dimensional structure results in energy subbands and discrete energy levels which lead to qualitative differences and observable experimental quantities like density of states (DOS)
- The carbon nano-tube provides a particularly good illustration of the subbands because while a sheet of graphite (in x-y plane) is constraint in the z direction and has infinite wall Boundary Condition (B.C.), it can be rolled up to a nano-tube and be constraint in another dimension with 'REAL' periodic B.C.

### Review of Graphite

· Remember, graphite has the structure



where, 
$$\vec{a}_1 = a\hat{x} + b\hat{y}$$
 and  $\vec{a}_2 = a\hat{x} - b\hat{y}$ 

• The E-k diagram can be

sound by 
$$[h(\vec{k})] = \begin{bmatrix} E_0 & h_0 \\ h_0^* & E_0 \end{bmatrix}$$

$$h_0 = -t \left( 1 + e^{i\vec{k}.\vec{a}_1} + e^{i\vec{k}.\vec{a}_2} \right)$$
  
=  $-t \left( 1 + 2e^{ik_x a} \cos k_y \right)$ 

with eigenvalues  $E = E_0 \pm |h_0|$ 

• So, plotted along the k<sub>v</sub> line we get an energy curve like



 With the conduction valleys appearing at the corners of the graphite Brillouin Zone...



### Review of Graphite

 Recall, the six Brillouin valleys really only give 2 independent valleys, e.g. in each group of 3 that are in the picture two of the valleys are away form the other by a reciprocal lattice unit vector; hence represent the same state. One can think that each corner in the 1st Brillouin zone contributes  $1/3^{rd}$ .  $1/3 \times 6 =$ 2(Left). Alternatively we can translate two of the corners in each group to get the full valleys on the right.



Points 1 and 2 are separated by  $2\pi/a$ , so they really are one and the same point. Graphically, we visualize 1 and 2 as  $\frac{1}{2}$  points in k-space

### Rolling up Graphite

- When we roll up graphite we get carbon nano-tube and in the process we constrain the already 1-D constraint sheet (in the z direction) yet in another dimension. Different ways of rolling will result in different E-k diagrams.
- An initial simple example is to roll in the  $\hat{x}$  direction. For instance, create a tube with circumference 2a:



- We use the circumferential vector  $\vec{c}$  to denote the direction and length. Here,  $\vec{c}=2a\hat{x}$  but in general  $\vec{c}=2am\hat{x}$  where  $\textbf{\textit{m}}$  is an integer. This will result in 'REAL" periodic B.Cs because each point on graphite will coincide with a similar one after being rolled up. (Notice that the magnitude of  $\vec{c}$  gives you the circumference of a cross section of the tube hence the name circumferential vector.)
- The periodic B.C along the circumference requires that  $\vec{k} \cdot \vec{c} = 2\pi v$  (v is an integer)

$$k_x \cdot 2am = 2\pi v \Rightarrow k_x = \frac{2\pi v}{2am}$$

• For the provided example, we have:

$$v = 0, \pm 1, \pm 2, \pm 3...$$

$$m = 1, 2, 3, 4...$$

• Here  $\mathbf{k}_{\mathbf{x}}$ 's are series lines parallel to ky.

#### Carbon Nano-Tube Subbands

#### Carbon Nano-tube k<sub>x</sub> Subbands



• This is how constraints along a given dimension result in subbands. *Note:* For carbon nano-tubes with a very large circumference, the number of subbands in the Brillouin Zone can be so great that its behavior is indistinguishable from that of graphite

Along the k<sub>y</sub>-axis the first two k<sub>x</sub> subbands look like



• For v = 1 and v = 0 the Fermi energy lies above the valence band. *Note:* Only subbands passing through conduction valleys in the Brillouin Zone corners conduct, such as V = 0, the others will either semi-conduct or insulate

#### Nano-Tube Folding

- It is possible to fold a nano-tube such that it has no subband passing thought the conduction valleys (i.e., by folding in the  $\hat{y}$  direction)
- For the most part only two types of folding are of interest. The first, a fold in the  $\hat{y}$  direction resulting in the zig-zag nano-tube



since the circumferential edge looks like a zig-zag. The second, a fold in the  $\hat{x}$  direction resulting in the arm-chair nano-tube



• A fold in the  $\hat{y}$  direction has the circumferential vector  $\vec{c}=2\,mb\,\,\hat{y}$ , where  $\textbf{\textit{m}}$  is an integer, and the resulting subbands look something like...



• A nano-tube will only conduct if one of its subbands pass through the six corners of the Brillouin Zone. So condition for conduction is

$$\frac{2\pi v}{2mb} = \frac{2\pi}{3b}$$
 or  $\frac{v}{2m} = \frac{1}{3}$ 

Therefore a zig-zag nano-tube will be like a conductor iff m is a multiple of 3!

### **General Folding**

- In general, it is possible to fold a carbon nano-tube along any circumferential vector of the form  $\vec{c} = m\vec{a}_1 + n\vec{a}_2$
- •where m and n are integers, and (m-n) must be a multiple of three in order for metallic properties to exist

• As stated earlier, subbands discretize k-space and lead to a finite number of E-k diagrams corresponding to specific values of **v**. In general we are most concerned with the behavior of a material near the Fermi level, so we consider the dispersion relations along each subband close to this level.

Subbands in direction  $\vec{c} = m\vec{a}_1 + n\vec{a}_2$ 





Assume an isotropic k-space near the Fermi level.

# Return to Dimensional Confinement

• How do we look at this process of dimensional confinement in a general manner? Where does the carbon nano-tube fit in?

Consider the well known bulk solid



without any constraints, very long, wide and deep. It has a general E-k behavior expressed by the function  $E(k_x, k_y, k_z)$  but if we constrain the bulk solid in one direction, say  $k_z$ , to a comparably short length,  $L_z$ , we get what is known as a quantum well and  $k_z$  will **be forced to have discrete values.** 

- Assuming periodic boundary conditions for  $L_z$ , we get  $k_z = (v2\pi) / L_z$  and our E-k function is  $E_v (k_x, k_y) = E(k_x, k_y, k_z = (2\pi v)/L_z)$  (where v is an integer)
- Similarly, constraining along the k<sub>y</sub> direction results in a **quantum wire**



• For the quantum wire we have  $k_y = (v'2\pi)/L_y$  and the E-k function

$$E_{v,v'}(k_x) = E\left(k_x, k_y = \frac{v'2\pi}{L_y}, k_z = \frac{v2\pi}{L_z}\right)$$

Note: a carbon nano-tube is really, in the general sense, a form of quantum wire!

# More on Dimensional Confinement

• Finally, confinement in the x-direction as well leads to a quantum dot



• The quantum dot has  $k_x = (v''2\pi)/L_x$  such that the E-k behavior is given by

$$E_{v, v', v''} = E\left(k_x = \frac{v''2\pi}{L_x}, k_y = \frac{v'2\pi}{L_y}, k_z = \frac{v2\pi}{L_z}\right)$$

The quantum energy levels are discretized in the same way as those of an atom and so quantum dots are often referred to as artificial atoms

• One important question, when do constraints lead to experimental observables? Essentially, quantization must be compared to thermal energy  $k_BT$ . Because the thermal energy tends to smooth out the difference between energy levels, the discretization corresponding to  $k_{x/y/z} = (q2\pi)/L_{x/y/z}$  must be bigger than or comparable to  $k_BT$  to experimentally show itself.

Note: this is often the motivation for conducting experiments at very low temperatures

#### An Approximate Expression for E(k<sub>x</sub>, k<sub>y</sub>, k<sub>z</sub>)

- Usually, it is necessary to derive an expression for  $E(k_x, k_y, k_z)$  about the conduction points of a bulk solid
- For silicon, use the parabolic approximation

$$E(k_x, k_y, k_z) = \frac{\hbar^2 k^2}{2m^*} = \frac{\hbar^2 (k_x^2 + k_y^2 + k_z^2)}{2m^*}$$

where m\* is the effective mass. And with z confinement, we get an expression for the quantum well with the dispersion relation:

$$E = \frac{\hbar^2 \left(k_x^2 + k_y^2\right)}{2m^*} + \frac{\hbar^2 v^2 4\pi^2}{L_z^2 2m^*} \left(k_z = \frac{v2\pi}{L_z}\right)$$

Silicon Parabolic Conduction Band Approximation



 For nano-tubes we can derive a similar parabolic expression via a Taylor series expansion that approximates the subbands near the conduction valleys

# Taylor Approximation for Nano-Tubes

• In carbon nano-tubes recall the expression for energy  $E = E_0 \pm h_0$  where

$$h_0 = -t \left( 1 + 2e^{ikx^a} \cos k_y b \right)$$

• So, to approximate the energy expression we Taylor expand  $h_0$  about the conduction valleys  $(k_x, k_y) = (0, \pm (2\pi)/3b)$ 

$$h_0 \approx k_x \left[ \frac{\partial h_0}{\partial k_x} \right]_{(0,\pm 2\pi/3b)} + \left( k_y \pm 2\pi/3b \right) \left[ \frac{\partial h_0}{\partial k_y} \right]_{(0,\pm 2\pi/3b)}$$

$$= \frac{i3a_0t}{2} k_x \pm \frac{3a_0t}{2} \left( k_y \pm 2\pi/3b \right) = \frac{i3a_0t}{2} \left( k_x \pm i\beta_y \right),$$
where  $\beta_y = k_y \pm \left( 2\pi/3b \right)$ 

• Thus,

$$E = E_0 \pm \frac{3ta_0}{2} \sqrt{k_x^2 + \beta_y^2}$$

- This parabolic expression, just as with silicon, provides a good model of the conduction properties of graphite and the descretized carbon nano-tubes (e.g. Let  $k_y = v2\pi/2$ mb)
- Furthermore, this model accurately estimates conduction characteristics for folding in any direction.

### Closing Comments

• Commonly, the carbon nanotube E-k diagrams, about the conduction points, given by this model look like



Next Lecture: Density of States (DOS)