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• Resistance of a conductor, of course, 
decreases as the length of the channel 
decreases.   But at some point it reaches a 
minimum and decreases no further.

• Minimum contact resistance is 
given by

where                   is the number 
of subbands (modes) at the 
Fermi level.

• Similarly, conductance per spin 
per subband is
and the total conductance is:

• The minimum resistance comes from the 
contact resistance. The smaller the device 
the more important this contact resistance. 
One might assume that this resistance may 
be eliminated by improving the contacts; 
this simply is not true. There is a minimum 
contact resistance.
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• Previously, at the beginning of the 
course, one level conductance was 
discussed for which the expression 

was derived.

• Now that we’ve discussed subbands
we can discuss the concept of modes

• Shouldn’t the resistance decrease as 
the cross sectional area is increased? 
If yes, can we predict such thing from 
this relation?

Yes. As we increase the channel 
cross-section, the number of modes                          
increases, so the resistance goes 
down.
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• Even when talking about real world 
devices there is a minimum
resistance, for example, with current 
FET’s it is approximately 100Ω

• The number of modes at a given 
energy equals the number of 
subbands available at that energy

• Let us review the major concepts of 
subbands and then move onto a 
general picture of conduction modes.

Prelude to Modes
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• Recall, for the familiar E-k 
diagram (e.g. Si or Ge)…

• We are largely interested in the 
areas circled above because they 
determine the conduction and 
optical properties of a material.  To 
simplify matters we create a 
parabolic model of the curvature in 
these areas
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• Particularly, for the conduction band we 
use

where EC is the bottom of the conduction 
band and mC is the effective mass (it is 
obtained by fitting the parabola to the E-k 
curve)

• Recall the concept of subbands.  One or 
more dimensions is made considerably 
small such that k-space becomes 
discernibly discrete in that direction

• For example, if the z-dimension is made 
very small we get
and a quantum well results
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• CAVEAT: Quantitative details of subband 
energies is often more complex than 
suggested by this simple model. 

• To continue, further confinement in the y-
direction results in a quantum wire

• One could argue that any 
solid should have subbands as 
well.  But the primary point is 
that we only worry about 
discretization when

(where v is an integer and L the 
length of a dimension), is equal 
to or greater than kBT. Usually 
this is too fine to be 
experimentally observable in 
large structures.
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• Generally, there are two types of 
confinement which cause quantization 
in the real world.  The first is described 
by periodic boundary conditions

The carbon nanotube is likely the only 
example of this.  The second is 
described by two potential barriers
often idealized as “infinite”

• GaAs sandwiched between two 
blocks of AlAs provides a real world 
example of this…

Of course, the “infinite” barrier is not 
really infinite and there is some 
leakage of the wavefunction (this is 
shown above)
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• For the quantum wire we get various 
subbands corresponding to different 
values of n and p or (n,p)

• The quantized wave functions in the 
y and z directions look like 
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Quantum Wire Subbands
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• Now, what does the density of states and modes distribution look like for a 
quantum wire?  Clearly, as with the carbon nanotube, the density of states peaks 
where each subband is crossed.  The mode distribution, on the other hand, has a 
staircase distribution increasing by integer amounts of 1 or more depending on the 
degeneracy of the subband
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• From the previous diagram we can 
conclude that the number of modes 
available for conduction depends on 
the relative position of the Fermi 
energy.  For example, if the Fermi 
energy is positioned as shown below 
we get and 
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• As a conductor increases in size 
the subbands get closer together, 
with the Fermi energy remaining 
unchanged this means that the 
resistance goes down! (More modes 
lie below the Fermi energy)
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• When voltage is applied, the current 
carried by a material is dependent 
upon the number of modes between μ1
and μ2
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conducting modes

• Given a quantum wire of length L, 
how do we calculate the current 
carried?
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• First, the number of electrons 
available for conduction is given by

This follows from a consideration of 
electron density

at near absolute zero with

(to be explained further in subsequent 
lectures) 
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Current for a Single Mode I
37:00

• If we look at a single mode in a subband (n, 
p), for the quantum wire energy relation

The conduction current may be written as

Where vx (kx) is the group velocity of an 
electron at state kx in the mode of interest
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• For a long conductor, this 
summation is replaced by the 
integral

(recall, the spacing between 
two points in k-space is (2π)/L)

• But, velocity is
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• Furthermore, given
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• More generally, we can 
write the maximum current 
for a single mode as

where V is the bias voltage
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• Conclusion: What is the current carried by electrons in a certain energy range? It 
is q/h multiplied by that energy range.  For the provided example     .   
Since only the positive velocity states are occupied between μ1 and μ2, this 
represents the excess positive going electrons.  Below μ2 both the positive and 
negative velocity states are equally occupied and their contributions cancel.
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• Importantly, the current carried by a 
subband is independent of the 
subband shape, it need not be 
parabolic, the relation
holds for all cases!

• This is because the correct velocity is 
the group velocity:

thus 
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• Overall the amount of current is 
dictated by the number of modes 
between μ1 and μ2.  Each mode 
contributes

for a total current of 
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