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• At the beginning of this course we 
started with a basic FET example

• In this simple model we discussed 
the basic factors of current flow.  Two 
different levels for μ1 and μ2 in the 
source and drain respectively results 
in the difference of agenda in the 
contacts: one keeps pumping in 
electrons while the other takes them 
out which leads to a net flow of 
electrons, through a level ε. 
• To make all this quantitative, we 
need to understand 1) where the 
levels in the channel are coming from 
and how to model them; 2) how the 
coupling to the contacts works.  
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• This week we are going to derive 
the Hamiltonian [H] for the FET 
example.  This matrix [H] replaces 
the single number ε in the toy 
example.

• From [H] we will show how to 
calculate electron density in the 
channel at equilibrium, that is

• Later on we will incorporate factors 
such as broadening and self-
consistent charging as we move 
towards a non-equilibrium model.
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FET Model
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Today we start by showing how to write H for the active region of a device.

Device Hamiltonian
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• How can we calculate [H] for the 
active region of a device?

• One method, reviewed in previous 
lectures, is the atomistic model that 
can be derived from first principles.  
Recall, a bulk solid may be viewed 
as a periodic arrangement of unit 
cells.  For common semiconductors 
there are two atoms in each unit 
cell.  The Nth unit cell is surrounded 
by m unit cells:

• For the purely atomistic model our 
Hamiltonian will be bN X bN in size, where 
b is the number of basis functions per unit 
cell and N is the number of unit cells.

• Silicon gives 2 atoms per unit cell and 
under the sp3s* model 5 basis functions per 
atom, for a total of 10 basis functions per 
unit cell. Therefore, applied to silicon the 
atomistic model gives a Hamiltonian of size 
10Nx10N and individual Hnm matrices of 
size 10x10
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• For materials having periodic 
structure, such as silicon, using the 
ansatz

The large atomistic Hamiltonian may 
be solved relatively easily

Resulting in the familiar          band 
diagram.
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• In devices it is often not practical to 
use the atomistic model.
• For example, the FET shown earlier 
has an atomistic Hamiltonian of size 
10XN, where N is the number of unit 
cells. Since N is huge, [H] is too 
large.

Unit Cells in the FET Channel

Channel
DS

VG VD

Devices
12:30



• A widely used alternative to atomistic 
Hamiltonian is the effective mass equation.
• The idea for the effective mass equation 
goes like this: say you have an n-type 
semiconductor that has the band structure 
like the picture. The important part for 
conduction and electronic properties is the 
shaded area so we don’t worry about getting 
the  Hamiltonian right every where but only 
near the bottom of conduction band.

• For now we are only interested in the 
lowest conduction band, and therefore 
concentrate on its effective mass equation, 
which for silicon is
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• This works well for bulk solids; 
however for inhomogeneous 
structures like our device, we try 
to use this relation to and modify 
in a way so as to describe the 
device.

Effective Mass Equation
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• How do we handle variations of 
dimension and external potentials 
(i.e. voltage) that might be placed 
on a periodic bandstructure?  Ans: 
Convert the effective mass 
equation to a differential equation

• Recall the free space 
Schrödinger equation

has the solution

such that
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• How did we get the dispersion relation 
E(k) from the Schrödinger equation?  
Basically, the following replacements were 
made:

• We may reverse the above process to go 
from E(k) relation  

to a differential equation:
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• Conceptually, the differential effective mass 
equation

is usually taken to be the equation which an 
electron obeys (for a given band) in a solid.  To 
get the effective mass equation for different 
materials we simply vary EC and mC.

• Notice that any external potential Uext, resulting, 
for instance, from a voltage applied across the 
solid, is easily incorporated into this equation 
and one does not have to worry about the atomic 
potentials which DO appear in the Schrödinger 
equation. (The usage of effective mass is a way 
to incorporate the solid’s potential and structural 
effects on electron density)

• But what have we lost in 
adopting this method?  
Primarily that our results 
will only be accurate in the 
energy range for which the 
original analytical 
approximation fits the 
conduction (or valence) 
band of interest and now 
where else.

• Finally, this method is not 
always applied so simply.  
For instance, an isotropic 
parabolic approximation is 
often not sufficient for 
valence bands
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• Method of finite differences 
may be applied to the effective 
mass equation

• Taking a one dimensional 
lattice of the form

we get an effective mass 
equation Hamiltonian of the 
form…

and any external potential is simply 
incorporated as

Ψ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇−=Ψ 2

2

2 C
C m

EE h

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
+−
−+−

−−+

=

OO

OM

L

t
tEt

ttEt
tttE

H
C

C

C

2
2

2

[ ]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−++−
−−++

=

OO

OOOM

L

t

txUtEt
ttxUtE

H C

C

)(2
)(2

2

1

ext

ext

Where 2
2

2 amt
C

h=

a   

-t-t

EC+2t

Finite Differences Applied to 
the Effective Mass Equation

27:30



• Essentially the effective mass equation is 
a way to model the behavior of conduction 
band electrons

• One way to look at the method of finite 
differences applied to the effective mass 
equation in 1-D…

As with atoms, -t may be viewed as the 
site-to-site nearest neighbor coupling and 
EC+2t as the site self-coupling

• There are two main 
advantages which this method 
has over the atomistic 
approach.  First, the 
Hamiltonian matrix tends to be 
much smaller.  Second, the 
lattice spacing need not be 
atomistic, though it can be, and 
only depends upon the energy 
range over which accuracy is 
desired.

a   

-t-t

EC+2t
k

Visualizing Effective Mass 
Equation

29:56



• What is the dispersion relation 
for a lattice with the 1-D spacing?

• From the Hamiltonian matrix 
developed earlier we know that 
the eigenvalues are given by

Observing the above equation it is 
apparent that the accuracy which 
with the “cosine” wave fits the 
original bandstructure depends 
heavily on the spacing of “a”

• Generally, a dispersion fit tends only to 
be accurate for a range “t” above EC.  
Notice that 

• This means that for a  given energy 
range we can use a larger ‘a’ if the 
effective mass mc is small. 
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• The bandstructure E(k) applies 
to uniform solids.

• Often devices are not uniform, in 
the simplest case due to an 
applied voltage, and so the 
bandstructure cannot be used 
directly.

• How do we get around this 
problem?

• For the conduction band we 
create the “effective mass 
equation” which gives the correct 
E(k) relation in the energy range 
of interest for a periodic solid.

Applied External Bias

• The effective mass equation is converted 
into a differential equation or a difference 
equation, using the method of finite 
differences.  External potentials such as 
an applied voltage or impurity atom may 
then be easily added to the Hamiltonian
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• One last comment:
The effective mass equation is easily 
applied to the conduction band, what 
about the valence band?  It turns out 
that, because the levels are so 
closely spaced, modeling in the 
valence band is in fact much more 
difficult.  When looking at the E-k 
relationship it turns out to not be 
parabolic but rather something like

which is not easily converted into a 
differential equation.  This is largely 
because multiple bands are all mixed 
up together (light hole, heavy hole, 
split off).

• Instead of a simple parabola the 
eigen-energies are usually 
approximated by a 4x4 or 6x6 matrix of 
the form

where P,Q,R,S are functions of     such 
that the matrix may be solved by the 
method of finite differences replacing

We use a 4x4 matrix for the 4-band 
model and a 6x6 for the 6-band model.  
We’ll get more into this later when 
talking about optical properties.  For 
now focus on the conduction band.
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