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• As stated in early lectures, the 
coupling of a device to contact 
reservoir leads to what is known as 
level broadening

• Let us start with a very important 
concept: “local density of states” (LDOS)   

• Recall, for a closed or equilibrium 
system from the Hamiltonian, [H], one 
can easily find the density matrix, and 
electron density (diagonal elements of 
density matrix in real space 
representation), via 

But for open systems the relation is not 
so simple i.e. a device that is in contact 
with a very large contact.
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• Looking at the density of states 
for an isolated single level…

… and reservoir

… we could write total DOS for the 
whole system:
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• The width of DOS depends on the strength of coupling 
to the contact. Weak coupling will collapse DOS to a 
delta function (0 broadening) while stronger coupling 
results in a more broadened DOS.

• One way to justify broadening is that for an 
isolated system, the electron and so as the electron 
wave function will stay in the level for ever. How 
ever for a system in contact, the electron will escape 
into to the reservoir. Or in other words the wave 
function in the system has a decay time. 
Mathematically speaking the wave function changes 
from            for an isolated system to                  for 
a system in contact. Looking at DOS as the Fourier 
transform of the wave function, it will be a delta 
function without a lifetime and it will look broadened 
when the electron has a finite lifetime. Stronger 
coupling Shorter Lifetime Bigger broadening. 
Today we want to understand broadening without 
using the concept of lifetime.
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• When these two elements are 
brought together as…

• Upon coupling, reservoir wave functions 
do not lie only in the reservoir but also 
“leak” into the device. Similarly, the device 
wavefunction will “leak” slightly into the 
reservoir

ε
E

D(E)

τγ h=

…the observed broadening may 
be explained by considering the 
“local density of states” in the 
device.  Which is

where “d” is the device
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• Notice that when the channel is 
coupled to the reservoir, the single level 
previously described as a delta function 
(which can hold one electron) broadens 
into a distribution of states SUM of 
which can contain ONLY one electron. 
What happens is that the level looses a 
part of wave function to the contact at a 
certain energy and gains some at 
another energy. What is true and not 
obvious is that what it looses is equal to 
what it gains so at the end the overall 
broadened levels can still contain only 
one electron. (not considering spin)
• In order to understand broadening, 
one needs to look at the Local Density 
of States. (LDOS)

• In general for any simple device 
the local density of states is 
expressed as

This may be viewed more generally 
as the diagonal elements of the 
spectral function A (divided by 2π; this 
is just a convention)
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• shares the same relation to                 
as the electron density,        , does to the 
density function             .   Recall,

• As well, if we sum               across all space 
we get the density of states and if we sum               
across all space we get the number of 
electrons (N).

• Similarly, a general matrix 
notation for the density function

leads to a general matrix 
formulation for the Spectral 
Function:

• Summary: The spectral 
function provides the LDOS in 
any basis
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• Now we will prove that, even after 
broadening, the total number of 
electrons a level holds is 1

• That is, we must prove

• But this is the same as the diagonal 
elements of

but in the eigenstate basis this is

since

This proves the conjecture since [I] 
remains the same in ANY basis.
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• The spectral function, importantly, may be 
used to rewrite the density matrix in a new 
way:

• In dealing with a closed system the old 
expression for density matrix is easier to do 
compared to this new expression based on 
spectral function. However, for open 
systems like our nano-transistor the story is 
different. We have to take into account the 
effect of coupling. There, we can get by 
using the spectral function looking at DOS 
inside the device AND considering the 
effect of coupling to the reservoirs.
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• How is this done?  Through 
the concept of “self-energy”
matrices, Σ1 and Σ2, which 
require discussion of Green’s 
functions a concept that is 
closely related to the spectral 
function.
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Further Applications of the 
Spectral Function
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• We can represent the delta 
function, with infinite height and area 
of 1, as

Which looks like

with width determined by 0+, such 
that width ≈ 0+
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• Since the spectral function is given by

we may now write it as

Where, the Green’s function, G, is

such that:
x
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Describing the Spectral Function 
in terms of Green’s Function
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• When including the infinite reservoirs the Green’s function for the device 
becomes

• Notice that the [H] and [∑] that appear above are of the size of the channel and 
not that of reservoirs; i.e. in order to describe the channel, you don’t have to take 
the inverse of a matrix that has a huge Hamiltonian describing the whole system; 
rather you just take the Green’s function describing the channel and deal with that 
which makes things a lot easier computationally. Notice that [∑] (self energy) 
gives the effect of coupling to the contacts and is important conceptually. For one 
thing, its imaginary part gives you the lifetime of the electron in the channel. We’ll 
discuss self energy more in depth in the next lecture.
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