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* Recall, we often must deal with a
device connected to a large reservoir.
With different Hamiltonians for the
device and reservoir associated by a
coupling . We want to concentrate
on the device.

reservoir

* The total Hamiltonian for the entire
system (device and reservoir) is

A=l ]

« Last time we defined the concept of a
spectral function, for the entire system
it is given by

A =276 (El — H)
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* Expanded out, the system * One more comment about the spectral
spectral function is function. Don'’t forget it is given by

A A,
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We are only interested in
calculating A, that part of the matrix * In general, any function of a matrix is

which gives the local density of calculated by diagonalizing the matrix,
states in the device. Fortunately then taking the function of the diagonal
using Green’s functions we can elements and transforming back
calculate A without dealing with the
entire matrix A.




« Later we will consider the physical
meaning of the Green’s function,
today we will concentrate on
evaluating the device Green'’s
function.

 Fortunately, to calculate device
properties we need only the device
Green’s function G. We can get G by
partitioning the matrix

» So, for the entire system we have a * An example of matrix partitioning:

Green’s function of the form

- {(EH’O*)[—H —r

| = (E+i0)-H,
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Note: the above formalism requires
inversion of a very large matrix. If the
device were not connected to the
reservoir we would have =0 and the
process would be much simpler




b} Aa+Bc=1
=/

}Aa—BD‘ICa:]:a=(A—BDIC)_1

d = Ca+Dc=0=>c=-D"Ca

‘Wehad: _ [(g+io)y-# - T
—r (E+i0)I-H,
* For the device Green’s function we may apply this logic to get

G=[(E+i0° ) -H]-2]" where = =c|(E+i0" ) —H,|'" =1G,r*

- Note, the size of X will be the same as that of the device since
[ 1: (4 x R)
[6 1. (R x R)} ~ kG .,z ] d x 4
F -] (r x a)]
* Why do we want G for the device? Remember, the spectral function for the

device is 4 =i [G-G*] from which the local density of states and the density matrix
may be calculated




 How do we
evaluate X given that
Gg might be a million
X million in size?
The key is that we
don’t need the entire
matrix Gg, but only
that portion which
has direct coupling
to the device!

* To illustrate this
process, let’s look at
an example, namely
a 1-D effective mass
model of our 1-D
capacitor

» We want to find electron density in the channel or
simply A = i [G-G']. Previously, periodic boundary
conditions were assumed, that was incorrect, we can
now treat open boundary conditions.

x-Direction efm MOS Capacitor

Insulator

Source Channel

Insulator

5 ...
t,= h%(2ma?)




* So, how do we calculate X, and %,,

iven +
WS =1G 7
since the left and right side are

basically the same, let’s concentrate
on the left side

* First look at the coupling matrix, for
this 1-D example it is

R —

11:¢

Note: Only one point is connected,
therefore all other points are zero

Insulator

Channel

Insulator




» Element by element the self-
energy matrix is

(Tma )(GR )a,b (T: )

* Thus, X, has only one non-zero
term at

(X)), =4G,(0.0)

Importantly, we see that the only
useful term in Gg is G(0,0)
which is referred to as the
surface Green’s function

* What is Gr(0,0)? First we'll state the
answer and then justify,

G(0,0)= —tie"k“
0

where K is related to energy by the
dispersion relation in the 1-D wire, that is

E =2t,(1-coska)

Hence, X is energy dependent.

» Side comment: X is not Hermitian since its
diagonal elements are not real. Also, one
can view the imaginary part of X in the
eigenvalue basis as the lifetime of a state




given, G, = [(E+i0+)[—HR F

E+i0 —F. 2, +,
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and G, G, =1
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multiplying through and equating both sides

©

(E+i0")- £, — 21, |G, (0,0)+1,G, (~1,0) = 1

f

E 2t
to

,Go(00)+|[E+i07)- E.~24, |G (-10) +£,G,(-2,0)=0
@

0|12 34 5..
h2/(2ma2)

or more generally to
(,G(n+1.0)+|E+i0 )~E. —2IO]GR(n,O)+tOGR(n—1,O):

for n<0

- Because this is periodic
e may apply the ansatz

- (1,0) = G,(0,0)e”™

QE




» Substituting the ansatz into @
G, (1n,0) = G,(0,0)e"

Oe’k“+(E-|—lO+)—E ~2t +t.e =0

For the first equation, (1), substitute
Gr(-1,0) = GR(0,0)6+’7‘“
1

(E+i0° )— E.— 21, +1,¢™
and now substitute (3) to get

G, (0,0) = —% e

« From Gg(0,0) we may calculate
>, and similarly X, , which allows us
to calculate G, A, and finally p

* Next Lecture:
Discuss the physical meaning of
the Green’s Function
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