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• Recall, we often must deal with a 
device connected to a large reservoir.  
With different Hamiltonians for the 
device and reservoir associated by a 
coupling τ.  We want to concentrate 
on the device.

• The total Hamiltonian for the entire 
system (device and reservoir) is 

• Last time we defined the concept of a 
spectral function, for the entire system 
it is given by
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• Expanded out, the system 
spectral function is

We are only interested in 
calculating A, that part of the matrix 
which gives the local density of 
states in the device.  Fortunately 
using Green’s functions we can 
calculate A without dealing with the 
entire matrix Ā. 

• One more comment about the spectral 
function.  Don’t forget it is given by 

• In general, any function of a matrix is 
calculated by diagonalizing the matrix, 
then taking the function of the diagonal 
elements and transforming back
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• Later we will consider the physical 
meaning of the Green’s function, 
today we will concentrate on 
evaluating the device Green’s 
function.

• So, for the entire system we have a 
Green’s function of the form

Note: the above formalism requires 
inversion of a very large matrix.  If the 
device were not connected to the 
reservoir we would have τ=0 and the 
process would be much simpler

• Fortunately, to calculate device 
properties we need only the device 
Green’s function G.  We can get G by 
partitioning the matrix

• An example of matrix partitioning:

Given,
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• We had:

• For the device Green’s function we may apply this logic to get

• Note, the size of Σ will be the same as that of the device since

• Why do we want G for the device?  Remember, the spectral function for the 
device is A = i [G-G+] from which the local density of states and the density matrix 
may be calculated
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• How do we 
evaluate Σ given that 
GR might be a million 
x million in size?  
The key is that we 
don’t need the entire 
matrix GR, but only 
that portion which 
has direct coupling 
to the device!

• To illustrate this 
process, let’s look at 
an example, namely 
a 1-D effective mass 
model of our 1-D 
capacitor

• We want to find electron density in the channel or 
simply A = i [G-G+].  Previously, periodic boundary 
conditions were assumed, that was incorrect, we can 
now treat open boundary conditions.
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• So, how do we calculate Σ1 and Σ2, 
given

since the left and right side are 
basically the same, let’s concentrate 
on the left side

• First look at the coupling matrix, for 
this 1-D example it is

Note: Only one point is connected, 
therefore all other points are zero
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• Element by element the self-
energy matrix is

• Thus, Σ1 has only one non-zero 
term at

Importantly, we see that the only 
useful term in GR is GR(0,0) 
which is referred to as the 
surface Green’s function
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• What is GR(0,0)?  First we’ll state the 
answer and then justify,

where k is related to energy by the 
dispersion relation in the 1-D wire, that is 

Hence, Σ is energy dependent.  

• Side comment: Σ is not Hermitian since its 
diagonal elements are not real.  Also, one 
can view the imaginary part of Σ in the 
eigenvalue basis as the lifetime of a state
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• Prove
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• Thus

multiplying through and equating both sides

to

or more generally to

for n<0
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• Because this is periodic 
we may apply the ansatz
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• Substituting the ansatz into       

we get 

or

For the first equation,     , substitute 
GR(-1,0) = GR(0,0)e+ika

and now substitute      to get
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• From GR(0,0) we may calculate 
Σ1 and similarly Σ2 , which allows us 
to calculate G, A, and finally ρ

• Next Lecture:
Discuss the physical meaning of 
the Green’s Function
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