

Prof．Supriyo Datta ECE 659

Purdue University

Lecture 27：Level Broadening：Self Energy Ref．Chapter 8.2

Network for Computational Nanotechnology

Working the System

- Recall, we often must deal with a device connected to a large reservoir. With different Hamiltonians for the device and reservoir associated by a coupling τ. We want to concentrate on the device.

Device and Reservoir

- The total Hamiltonian for the entire system (device and reservoir) is

$$
\bar{H}=\left[\begin{array}{cc}
H & \tau \\
\tau & H_{R}
\end{array}\right]
$$

- Last time we defined the concept of a spectral function, for the entire system it is given by

$$
\begin{aligned}
& \bar{A}=2 \pi \delta(E I-\bar{H}) \\
& =i\left\{\begin{array}{l}
{\left[\left(E+i 0^{+}\right) I-\bar{H}\right]^{-1}-} \\
{\left[\left(E-i 0^{+}\right) I-\bar{H}\right]^{-1}}
\end{array}\right\} \\
& =i\left[\bar{G}-\bar{G}^{+}\right]
\end{aligned}
$$

Spectral Function

- Expanded out, the system spectral function is

$$
\bar{A}=\left[\begin{array}{cc}
A & A_{d R} \\
A_{R d} & A_{R}
\end{array}\right]
$$

We are only interested in calculating A, that part of the matrix which gives the local density of states in the device. Fortunately using Green's functions we can calculate A without dealing with the entire matrix $\overline{\mathrm{A}}$.

- One more comment about the spectral function. Don't forget it is given by

$$
\begin{aligned}
& \bar{A}=2 \pi \delta(E I-\bar{H}), \text { where } \\
& 2 \pi \delta(x)=i\left\{\frac{1}{x+i 0^{+}}-\frac{1}{x-i 0^{+}}\right\}
\end{aligned}
$$

- In general, any function of a matrix is calculated by diagonalizing the matrix, then taking the function of the diagonal elements and transforming back

Green's Function

- Later we will consider the physical meaning of the Green's function, today we will concentrate on evaluating the device Green's function.
- So, for the entire system we have a Green's function of the form

$$
\bar{G}=\left[\begin{array}{cc}
\left(E+i 0^{+}\right) I-H & -\tau \\
-\tau^{+} & \left(E+i 0^{+}\right) I-H_{R}
\end{array}\right]^{-1}
$$

Note: the above formalism requires inversion of a very large matrix. If the device were not connected to the reservoir we would have $\tau=0$ and the process would be much simpler

- Fortunately, to calculate device properties we need only the device Green's function G. We can get G by partitioning the matrix
- An example of matrix partitioning:

$$
\text { Given, } \begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1} } \\
& \therefore\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=I
\end{aligned}
$$

Self Energy from Green's

$\left.\therefore\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=I \Rightarrow \begin{array}{l}A a+B c=I \\ C a+D c=0 \Rightarrow c=-D^{-1} C a\end{array}\right\} A a-B D^{-1} C a=I \Rightarrow a=\left(A-B D^{-1} C\right)^{-1}$

- We had:

$$
\bar{G}=\left[\begin{array}{cc}
\left(E+i 0^{+}\right) I-H & -\tau \\
-\tau^{+} & \left(E+i 0^{+}\right) I-H_{R}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
G & G_{d R} \\
G_{R d} & G_{R R}
\end{array}\right]
$$

- For the device Green's function we may apply this logic to get

$$
G=\left[\left[\left(E+i 0^{+}\right) I-H\right]-\Sigma\right]^{-1} \text {, where } \Sigma=\tau\left[\left(E+i 0^{+}\right) I-H_{R}\right]^{-1} \tau^{+}=\tau G_{R} \tau^{+}
$$

- Note, the size of Σ will be the same as that of the device since

$$
\left.\begin{array}{l}
{[\tau]:\left(\begin{array}{lll}
d & \times & R
\end{array}\right)} \\
{[G]:\left(\begin{array}{lll}
R & \times & R
\end{array}\right)} \\
{\left[\tau^{+}\right]:\left(\begin{array}{lll}
R & \times & d
\end{array}\right)}
\end{array}\right\} \therefore \quad \therefore \quad\left[\begin{array}{lll}
\tau & G & \tau^{+}
\end{array}\right]: d \times d
$$

-Why do we want G for the device? Remember, the spectral function for the device is $A=i\left[G-G^{+}\right]$from which the local density of states and the density matrix may be calculated

Self Energy Matrix

- How do we
evaluate Σ given that G_{R} might be a million x million in size?
The key is that we don't need the entire matrix G_{R}, but only that portion which has direct coupling to the device!
- To illustrate this process, let's look at an example, namely a 1-D effective mass model of our 1-D capacitor
- We want to find electron density in the channel or simply $A=i\left[G-G^{+}\right]$. Previously, periodic boundary conditions were assumed, that was incorrect, we can now treat open boundary conditions.

x-Direction efm MOS Capacitor

- So, how do we calculate Σ_{1} and Σ_{2}, given $\sum=\tau G_{R} \tau^{+}$ since the left and right side are basically the same, let's concentrate on the left side
- First look at the coupling matrix, for this 1-D example it is

$$
\tau_{1}=\begin{gathered}
R \rightarrow \\
\downarrow \\
{\left[\begin{array}{ccc}
-t_{0} & 0 & \ldots \\
0 & 0 & \\
\vdots & & \ddots
\end{array}\right]}
\end{gathered}
$$

Note: Only one point is connected, therefore all other points are zero

x-Direction efm MOS Capacitor

- Element by element the selfenergy matrix is

$$
\sum_{m n}=\left(\tau_{m a}\right)\left(G_{R}\right)_{a, b}\left(\tau_{b, n}^{+}\right)
$$

- Thus, Σ_{1} has only one non-zero term at

$$
\left(\sum_{1}\right)_{11}=t_{0}^{2} G_{R}(0,0)
$$

Importantly, we see that the only useful term in G_{R} is $G_{R}(0,0)$ which is referred to as the surface Green's function

- What is $\mathrm{Gr}_{\mathrm{R}}(0,0)$? First we'll state the answer and then justify,

$$
G(0,0)=-\frac{1}{t_{0}} e^{i k a}
$$

where k is related to energy by the dispersion relation in the 1-D wire, that is

$$
E=2 t_{0}(1-\cos k a)
$$

Hence, Σ is energy dependent.

- Side comment: Σ is not Hermitian since its diagonal elements are not real. Also, one can view the imaginary part of Σ in the eigenvalue basis as the lifetime of a state

Surface Green's Function

- Prove $G_{R}(0,0)=-\frac{1}{t_{0}} e^{i k a}$

x-Direction efm MOS Capacitor

given, $G_{R}=\left[\left(E+i 0^{+}\right) I-H_{R}\right]^{-1}$
$\therefore G_{R}=\left[\begin{array}{ccc}E+i 0^{+}-E_{C}-2 t_{0} & +t_{0} & \cdots \\ +t_{0} & E+i 0^{+}-E_{C}-2 t_{0} & \\ \vdots & & \ddots\end{array}\right]^{-1}$
\uparrow tridiagonal
and $G_{R}^{-1} G_{R}=I$

Surface Green's Function

- Thus

$$
\left[G_{R}^{-1}\right]\left[\begin{array}{cc}
G^{-1} & -2 \\
G^{-2}
\end{array}\right]=\left[\begin{array}{l}
I
\end{array}\right.
$$

multiplying through and equating both sides
$\left[\left(E+i 0^{+}\right)-E_{C}-2 t_{0}\right] G_{R}(0,0)+t_{0} G_{R}(-1,0)=1$
to
$t_{0} G_{R}(0,0)+\left[\left(E+i 0^{+}\right)-E_{C}-2 t_{0}\right] G_{R}(-1,0)+t_{0} G_{R}(-2,0)=0$
or more generally to
$t_{0} G_{R}(n+1,0)+\left[\left(E+i 0^{+}\right)-E_{C}-2 t_{0}\right] G_{R}(n, 0)+t_{0} G_{R}(n-1,0)=0$
for $\mathrm{n}<0$

x-Direction efm MOS

 Capacitor- Because this is periodic we may apply the ansatz

$$
G_{R}(n, 0)=G_{R}(0,0) e^{-i n k a}
$$

Surface Green's Function

- Substituting the ansatz into (2)

$$
G_{R}(n, 0)=G_{R}(0,0) e^{-i n k a}
$$

we get

$$
t_{0} e^{i k a}+\left(E+i 0^{+}\right)-E_{C}-2 t_{0}+t_{0} e^{-i k a}=0
$$

or

$$
\stackrel{\text { or }}{ }\left(E+i 0^{+}\right)=E_{C}+2 t_{0}(1-\cos k a)^{(3}
$$

For the first equation, (1), substitute $G_{R}(-1,0)=G_{R}(0,0) e^{+i k a}$

$$
\therefore G_{R}(0,0)=\frac{1}{\left(E+i 0^{+}\right)-E_{C}-2 t_{0}+t_{0} e^{+i k a}}
$$

and now substitute (3) to get

$$
G_{R}(0,0)=-\frac{1}{t} e^{i k a}
$$

