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• Continued from last time, we 
were looking at an open 
system consisting of a device 
coupled to a reservoir.  The 
reservoir and device 
Hamiltonians are HR and H, 
with coupling τ between the 
two.

• Recall, the overall Hamiltonian is
with a Green’s function:

and a spectral function:

The device Green’s function and spectral 
function are 

• Importantly, the Green’s function method 
allows us to concentrate on the device and not 
worry about the entire system.
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• In this lecture, we will discuss the physical meaning of the Green’s function and 
furthermore the physical interpretation of the self-energy matrix Σ
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• Recall, Σ = τgRτ+ , where gR is 
the surface Green’s function.  It 
describes only those points at the 
reservoir device boundary. And 
generally we only need to solve the 
Green’s function only for those few 
points. 

• Side Note: A very important 
property of Σ is that it is anti-
Hermitian

• Moving on…
To consider the physical meaning of 
G(E), we consider the diagonal 
representation where things are more 
clear to understand
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• Now, let us look at

in the time domain.

• This is done via the Fourier 
transform

with inverse transform

• Specifically, consider the Fourier 
transform of one level, say ε1…

where θ(t) is the step function
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• To see how this works, perform the 
inverse Fourier transform

• Thus,

is the time domain version of the 
Green’s function

• And we can see that it satisfies

• What does this mean?  Answer: It 
means that we can physically view the 
Green’s function as the impulse 
response of the Schrödinger equation
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• Side note: What is this 0+ we include 
with the Green’s function?  
Mathematically we justify it because it 
makes the Fourier transform converge, 
but physically it has very subtle 
meaning

• Main Point: The Green’s function, 
G(t), is the impulse response

of the general Schrödinger equation

• In general we can look at the 
impulse response of any differential 
equation to get the Green’s function 
for that equation.  

e.g. Poisson’s Equation 

or an LC circuit
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• Example: impulse excitation of the 
Schrödinger equation in 1-Dimension 
might be viewed as “injecting” an 
electron into the well known 1-D wire

• [G(E)] in the time domain has a 
range of 0 ≤ t < ∞ and is usually called 
the “retarded Green’s function.”
[G(E)]+ in the time domain has a range 
of -∞ < t ≤ 0 and is usually called the 
“advanced Green’s function”e-

t
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• Also note that the presence of +i0+ or 
–i0+ in G and G+ respectively leads to 
a world of difference in the time 
domain.  For our simple example G+

gives
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• We can also apply the concept of 
“impulse response” to gain insight into 
the physical meaning of Σ.

• Recall for the device region

translated to the time domain this 
gives…

• Let us consider a single level device 
such that [H] = ε. Therefore we have

Thus,

where 
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• Physically the real part of Σ
corresponds to an energy level shift in 
the device.  The imaginary part (times 
–2) represents the rate at which an 
electron will leak out of the reservoir.

• From
we define the lifetime, τ, of an electron 
state as

such that

• Also, γ is related to the broadening 
of a level

such that there exists an “uncertainty”
relation between lifetime and 
broadening
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• How do we know that γ is directly 
related to the broadening of a level?

• Well, 
and for our 1-level device

Note: D(E) = 1/2π Trace[A(E)] in general, 
and for a 1-level device D(E)=A(E)/2π

• This is exactly the 1-level device 
DOS Lorentzian broadening 
discussed at the beginning of the 
course!
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• Thus, the overall broadening effect 
(and lifetime) is described by the self-
energy, Σ(E)

• Next time: the role of +± 0i

Where Broadening Comes 
From
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