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- In this lecture, we will discuss the physical meaning of the Green’s function and
furthermore the physical interpretation of the self-energy matrix =

Device Coupled to a Reservoir

reservoir

- Recall, the overall Hamiltonian is ﬁ:{[{
T

with a Green’s function:
Pl T T, [ A+ T o !
G=|El-H+i0'|' G =[E-H-i0']
and a s spectral_functi_on: -
A4=i(G-G")=2x5|ET-H |
The device Green’s function and spectral
functonare G = [E1 - H - X [
+ + !
G =Bl -H-%"]
A=i(G-G")
 Importantly, the Green’s function method

allows us to concentrate on the device and not
worry about the entire system.
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« Continued from last time, we
were looking at an open
system consisting of a device
coupled to a reservoir. The
reservoir and device
Hamiltonians are H and H,
with coupling T between the
two.




- Recall, X = TgRT", where gi is - Moving on...

the surface Green’s function. It To consider the physical meaning of
describes only those points at the G(E), we consider the diagonal
reservoir device boundary. And representation where things are more
generally we only need to solve the clear to understand

Green’s function only for those few
points.

1
E—g +i0"

0

0

 Side Note: A very important
property of Z is that it is anti-
Hermitian

1
E—g,+i0"
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* Now, let us look at
| 1
E—g +i0"

0

 Specifically, consider the Fourier
transform of one level, say «,...

~ . (dE( 1
G“(t)_jzyzth—gl +i0°

0

1
E—¢,+i0"

— —ie(t)e_iglt/h€_0+t
h

in the time domain. where 0(t) is the step function

e This is done via the Fourier
transform ~

dE ik
G(t): j%G(E)e Etfh

p
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with inverse transform

G(E)= [diG(t)e

+iEt/h




» To see how this works, perform the
inverse Fourier transform

G (E ) — j_wwdtéll (t)eJriEt "

is the time domain version of the
— 1 J‘OO dte —ig|t/he+,'Et/he_o+t Green’s function
7

« And we can see that it satisfies

, i(E—e)t/h _—0"1 .
— i e e

. O )|
ho|(E-e)-0")/n| [Zhg—(gl—lo ):|G11(t):5(t)

i 1
X 0
: + » What does this mean? Answer: It
L (Z(E —&)-0 )/h means that we can physically view the
1 Green'’s function as the impulse
: response of the Schrddinger equation
E—-¢& +i0"




 Side note: What is this 0* we include * In general we can look at the

with the Green’s function? impulse response of any differential
Mathematically we justify it because it equation to get the Green’s function
makes the Fourier transform converge, for that equation.

but physically it has very subtle

meaning e.g. Poisson’s Equation

Vig=—= VG =—
E
or an LC circuit

-

* Main Point: The Green’s function,
G(t), is the impulse response

(zh——[H]ﬂO*[l]jG(t) 150

of the general Schrodinger equation

h——[mj{w)} o]

ot
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» Example: impulse excitation of the * [G(E)] in the time domain has a
Schrodinger equation in 1-Dimension range of 0 <t < o and is usually called
might be viewed as “injecting” an the “retarded Green’s function.”

electron into the well known 1-D wire [G(E)]* in the time domain has a range
g < of -o0 <t <0 and is usually called the

- \v “advanced Green’s function”
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_ retarded

* Also note that the presence of +i0* or
—i0* in G and G* respectively leads to
a world of difference in the time
domain. For our simple example G*

glves o advancedl‘
ll(t)——H( t)e e !




« We can also apply the concept of
“impulse response” to gain insight into
the physical meaning of X.

* Let us consider a single level device
such that [H] = €. Therefore we have

(z’h 9 _, —ZjG(t) = 5(¢)

 Recall for the device region ot

Thus,
G(t) — e—igt/he—iZt/he(t)
_ e—ie't/he—yt/Zhe(t)

G=|EI-H-2|"
L|EI-H-3|G=1

where

g =g+Re{X}

translated to the time domain this

in % —H — ZjG(t) =10(1)




* Also, v is related to the broadening
of a level

* Physically the real part of X
corresponds to an energy level shift in
the device. The imaginary part (times
—2) represents the rate at which an
electron will leak out of the reservoir.

~N

«From ¥y = =2 Im {Z}
we define the lifetime, t, of an electron
state as

such that there exists an “uncertainty”
relation between lifetime and
broadening

such that

G(t) _ e(t)eie't/he—t/ZT

yxt=nh




- How do we know that 7 is directly * This is exagtly the 1-Iev§I device
DOS Lorentzian broadening

related to the broadening of a level? .
. . discussed at the beginning of the
* Well, A(E)ZZ(G_G ) course!

and for our 1-level device
Lorentzian

1

G(E)= :

E-¢'+
2

. A(E)
- 2z E

=1

* Thus, the overall broadening effect
(and lifetime) is described by the self-
energy, 2(E)

Y — =
(£ - &'y {gj

Note: D(E) = 1/2x Trace[A(E)] in general,
and for a 1-level device D(E)=A(E)/2x
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