

Lecture 28: Level Broadening: Lifetime Ref. Chapter 8.3

•

nanoHUB

online simulations and more

General Concepts

• In this lecture, we will discuss the physical meaning of the Green's function and furthermore the physical interpretation of the self-energy matrix Σ

Device Coupled to a Reservoir

• Continued from last time, we were looking at an open system consisting of a device coupled to a reservoir. The reservoir and device Hamiltonians are H_R and H, with coupling τ between the two.

• Recall, the <u>overall</u> Hamiltonian is $\overline{H} = \begin{bmatrix} H & \tau \\ \tau^+ & H_R \end{bmatrix}$ with a Green's function:

$$\overline{G} = \left[E\overline{I} - \overline{H} + i0^{+}\right]^{-1} \qquad \overline{G}^{+} = \left[E\overline{I} - \overline{H} - i0^{+}\right]^{-1}$$

and a spectral function:

$$\overline{A} = i(\overline{G} - \overline{G}^{+}) = 2\pi\delta \left[E\overline{I} - \overline{H} \right]$$

The <u>device</u> Green's function and spectral function are $G = \begin{bmatrix} EI - H - \Sigma \end{bmatrix}^{-1}$

$$G^{+} = \begin{bmatrix} EI - H - \Sigma^{+} \end{bmatrix}^{-1}$$

$$A = i(G - G^{+})$$

• Importantly, the Green's function method allows us to concentrate on the device and not worry about the entire system.

Spectral Function

- Recall, $\Sigma = \tau g_{R} \tau^{+}$, where g_{R} is the surface Green's function. It describes only those points at the reservoir device boundary. And generally we only need to solve the Green's function only for those few points.
- Side Note: A very important property of Σ is that it is anti-Hermitian

Moving on...

To consider the physical meaning of G(E), we consider the diagonal representation where things are more clear to understand

$$[G(E)] = \begin{bmatrix} \frac{1}{E - \varepsilon_1 + i0^+} & 0 & \cdots \\ 0 & \frac{1}{E - \varepsilon_2 + i0^+} \\ \vdots & \ddots \end{bmatrix}$$

Inverse Fourier Transform

Now, let us look at

$$[G(E)] = \begin{bmatrix} \frac{1}{E - \varepsilon_1 + i0^+} & 0 & \cdots \\ 0 & \frac{1}{E - \varepsilon_2 + i0^+} \\ \vdots & \ddots \end{bmatrix}$$

in the time domain.

• This is done via the Fourier transform $\widetilde{G}(t) = \int \frac{dE}{2\pi\hbar} G(E)e^{-iEt/\hbar}$

with inverse transform

$$G(E) = \int dt G(t) e^{+iEt/\hbar}$$

• Specifically, consider the Fourier transform of one level, say ε_1 ...

$$\widetilde{G}_{11}(t) = \int \frac{dE}{2\pi\hbar} \left(\frac{1}{E - \varepsilon_1 + i0^+} \right) e^{-iEt/\hbar}$$

$$=-\frac{i}{\hbar}\theta(t)e^{-i\varepsilon_{1}t/\hbar}e^{-0^{+}t}$$

where $\theta(t)$ is the step function

Inverse Fourier Transform

• To see how this works, perform the inverse Fourier transform

$$G_{11}(E) = \int_{-\infty}^{\infty} dt \, \widetilde{G}_{11}(t) e^{+iEt/\hbar}$$

$$=\frac{-i}{\hbar}\int_0^\infty dt e^{-i\varepsilon_{\mid t/\hbar}}e^{+iEt/\hbar}e^{-0^+t}$$

$$=\frac{-i}{\hbar}\left[\frac{e^{i(E-\varepsilon_1)t/\hbar}e^{-0^+t}}{(i(E-\varepsilon_1)-0^+)/\hbar}\right]_0^{\infty}$$

$$= \frac{i}{\hbar} \times \frac{1}{\left(i(E - \varepsilon_1) - 0^+\right)/\hbar}$$

$$=\frac{1}{E-\varepsilon_1+i0^+}$$

• Thus,
$$\widetilde{G}_{11} = \frac{-i}{\hbar} \theta(t) e^{-i\varepsilon_1 t/\hbar} e^{-0^+ t}$$

is the time domain version of the Green's function

And we can see that it satisfies

$$\left[i\hbar\frac{\partial}{\partial t} - \left(\varepsilon_1 - i0^+\right)\right] \widetilde{G}_{11}(t) = \delta(t)$$

• What does this mean? Answer: It means that we can physically view the Green's function as the impulse response of the Schrödinger equation

Impulse Response

- Side note: What is this 0+ we include with the Green's function?

 Mathematically we justify it because it makes the Fourier transform converge, but physically it has very subtle meaning
- Main Point: The Green's function,
 G(t), is the impulse response

$$\left(i\hbar\frac{\partial}{\partial t} - [H] + i0^{+}[I]\right)G(t) = [I]\delta(t)$$

of the general Schrödinger equation

$$\left(i\hbar\frac{\partial}{\partial t} - [H]\right) \{\Psi(t)\} = [0]$$

• In general we can look at the impulse response of any differential equation to get the Green's function for that equation.

e.g. Poisson's Equation

$$\nabla^2 \phi = \frac{-\rho}{\varepsilon} \Longrightarrow \nabla^2 G = -\delta(\vec{r})$$

or an LC circuit

The Physical Picture

• Example: impulse excitation of the Schrödinger equation in 1-Dimension might be viewed as "injecting" an electron into the well known 1-D wire

• Also note that the presence of +i0+ or $-i0^+$ in G and G+ respectively leads to a world of difference in the time domain. For our simple example G+ gives $G_{11}^+(t)=\frac{i}{\hbar}\theta(-t)e^{-i\varepsilon_1t/\hbar}e^{i0^+t}$

• [G(E)] in the time domain has a range of $0 \le t < \infty$ and is usually called the "retarded Green's function." [G(E)]⁺ in the time domain has a range of $-\infty < t \le 0$ and is usually called the "advanced Green's function"

Physical Interpretation of Σ

- We can also apply the concept of "impulse response" to gain insight into the physical meaning of Σ .
- Recall for the device region

$$G = [EI - H - \Sigma]^{-1}$$
$$\therefore [EI - H - \Sigma]G = I$$

translated to the time domain this gives...

$$\left(i\hbar\frac{\partial}{\partial t} - H - \Sigma\right)G(t) = I\delta(t)$$

• Let us consider a single level device such that $[H] = \varepsilon$. Therefore we have

$$\left(i\hbar\frac{\partial}{\partial t} - \varepsilon - \Sigma\right)G(t) = \delta(t)$$

Thus,

$$G(t) = e^{-i\varepsilon t/\hbar} e^{-i\Sigma t/\hbar} \theta(t)$$
$$= e^{-i\varepsilon' t/\hbar} e^{-\gamma t/2\hbar} \theta(t)$$

where

$$\varepsilon' = \varepsilon + \operatorname{Re} \{\Sigma\}$$

 $\gamma = -2 \operatorname{Im} \{\Sigma\}$

Physical Interpretation of Σ

- Physically the real part of Σ corresponds to an energy level shift in the device. The imaginary part (times -2) represents the rate at which an electron will leak out of the reservoir.
- From $\gamma = -2$ Im $\{\Sigma\}$ we define the lifetime, τ , of an electron state as

$$\frac{1}{\tau} = \frac{\gamma}{\hbar}$$

such that

$$G(t) = \theta(t)e^{i\varepsilon't/\hbar}e^{-t/2\tau}$$

• Also, γ is related to the broadening of a level

such that there exists an "uncertainty" relation between lifetime and broadening

$$\gamma \times t = \hbar$$

Where Broadening Comes From

- How do we know that γ is directly related to the broadening of a level?
- Well, $A(E) = i(G G^{+})$ and for our 1-level device

$$G(E) = \frac{1}{E - \varepsilon' + \frac{i\gamma}{2}}$$

$$\therefore \frac{A(E)}{2\pi} = i \left(\frac{1}{E - \varepsilon' + \frac{i\gamma}{2}} - \frac{1}{E - \varepsilon' - \frac{i\gamma}{2}} \right)$$

$$= \frac{\gamma}{\left(E - \varepsilon'\right)^2 + \left(\frac{\gamma}{2}\right)^2} = D(E)$$

Note: $D(E) = 1/2\pi \operatorname{Trace}[A(E)]$ in general, and for a 1-level device $D(E) = A(E)/2\pi$

• This is exactly the 1-level device DOS Lorentzian broadening discussed at the beginning of the course!

• Thus, the overall broadening effect (and lifetime) is described by the self-energy, $\Sigma(E)$

• Next time: the role of $(\pm i0)$