

Prof．Supriyo Datta ECE 659

 Purdue University
Lecture 28：Level Broadening：Lifetime Ref．Chapter 8.3

Network for Computational Nanotechnology

General Concepts

- In this lecture, we will discuss the physical meaning of the Green's function and furthermore the physical interpretation of the self-energy matrix Σ

Device Coupled to a Reservoir

- Continued from last time, we were looking at an open system consisting of a device coupled to a reservoir. The reservoir and device
Hamiltonians are H_{R} and H, with coupling τ between the two.
- Recall, the overall Hamiltonian is $\bar{H}=\left[\begin{array}{cc}H & \tau \\ \tau^{+} & H_{R}\end{array}\right]$ with a Green's function:

$$
\bar{G}=\left[E \bar{I}-\bar{H}+i 0^{+}\right]^{-1} \quad \bar{G}^{+}=\left[E \bar{I}-\bar{H}-i 0^{+}\right]^{-1}
$$

and a spectral function:

$$
\bar{A}=i\left(\bar{G}-\bar{G}^{+}\right)=2 \pi \delta[E \bar{I}-\bar{H}]
$$

The device Green's function and spectral function are $G=[E I-H-\Sigma]^{-1}$

$$
\begin{gathered}
G^{+}=\left[E I-H-\Sigma^{+}\right]^{-1} \\
A=i\left(G-G^{+}\right)
\end{gathered}
$$

- Importantly, the Green's function method allows us to concentrate on the device and not worry about the entire system.

Spectral Function

- Recall, $\Sigma=\tau g_{R} \tau^{+}$, where g_{R} is the surface Green's function. It describes only those points at the reservoir device boundary. And generally we only need to solve the Green's function only for those few points.
- Side Note: A very important property of Σ is that it is antiHermitian
- Moving on...

To consider the physical meaning of $\mathrm{G}(\mathrm{E})$, we consider the diagonal representation where things are more clear to understand

$$
[G(E)]=\left[\begin{array}{cc}
\frac{1}{E-\varepsilon_{1}+i 0^{+}} & 0 \\
0 & \frac{1}{E-\varepsilon_{2}+i 0^{+}}
\end{array}\right.
$$

- Now, let us look at
$[G(E)]=\left[\begin{array}{ccc}\frac{1}{E-\varepsilon_{1}+i 0^{+}} & 0 & \cdots \\ 0 & \frac{1}{E-\varepsilon_{2}+i 0^{+}} & \\ \vdots & & \ddots\end{array}\right]$
in the time domain.
- This is done via the Fourier transform

$$
\widetilde{G}(t)=\int \frac{d E}{2 \pi \hbar} G(E) e^{-i E t / \hbar}
$$

with inverse transform

$$
G(E)=\int d t G(t) e^{+i E t / \hbar}
$$

- Specifically, consider the Fourier transform of one level, say $\varepsilon_{1} \ldots$

$$
\begin{aligned}
& \widetilde{G}_{11}(t)=\int \frac{d E}{2 \pi \hbar}\left(\frac{1}{E-\varepsilon_{1}+i 0^{+}}\right) e^{-i E t / \hbar} \\
& =-\frac{i}{\hbar} \theta(t) e^{-i \varepsilon_{1} t / \hbar} e^{-0^{+} t}
\end{aligned}
$$

where $\theta(\mathrm{t})$ is the step function

Inverse Fourier Transform

- To see how this works, perform the inverse Fourier transform

$$
\begin{aligned}
& G_{11}(E)=\int_{-\infty}^{\infty} d t \widetilde{G}_{11}(t) e^{+i E t / \hbar} \\
& =\frac{-i}{\hbar} \int_{0}^{\infty} d t e^{-i \varepsilon_{1} t / \hbar} e^{+i E t / \hbar} e^{-0^{+} t} \\
& =\frac{-i}{\hbar}\left[\frac{e^{i\left(E-\varepsilon_{1}\right) t / \hbar} e^{-0^{+} t}}{\left(i\left(E-\varepsilon_{1}\right)-0^{+}\right) / \hbar}\right]_{0}^{\infty} \\
& =\frac{i}{\hbar} \times \frac{1}{\left(i\left(E-\varepsilon_{1}\right)-0^{+}\right) / \hbar} \\
& =\frac{1}{E-\varepsilon_{1}+i 0^{+}}
\end{aligned}
$$

- Thus,

$$
\widetilde{G}_{11}=\frac{-i}{\hbar} \theta(t) e^{-i \varepsilon_{1} t / \hbar} e^{-0^{+} t}
$$

is the time domain version of the Green's function

- And we can see that it satisfies

$$
\left[i \hbar \frac{\partial}{\partial t}-\left(\varepsilon_{1}-i 0^{+}\right)\right] \widetilde{G}_{11}(t)=\delta(t)
$$

- What does this mean? Answer: It means that we can physically view the Green's function as the impulse response of the Schrödinger equation
- Side note: What is this 0^{+}we include with the Green's function?
Mathematically we justify it because it makes the Fourier transform converge, but physically it has very subtle meaning
- Main Point: The Green's function, $\mathrm{G}(\mathrm{t})$, is the impulse response
$\left(i \hbar \frac{\partial}{\partial t}-[H]+i 0^{+}[I]\right) G(t)=[I] \delta(t)$
of the general Schrödinger equation
$\left(i \hbar \frac{\partial}{\partial t}-[H]\right)\{\Psi(t)\}=[0]$
- In general we can look at the impulse response of any differential equation to get the Green's function for that equation.
e.g. Poisson's Equation

$$
\nabla^{2} \phi=\frac{-\rho}{\varepsilon} \Rightarrow \nabla^{2} G=-\delta(\stackrel{\rightharpoonup}{r})
$$

or an LC circuit

The Physical Picture

- Example: impulse excitation of the Schrödinger equation in 1-Dimension might be viewed as "injecting" an electron into the well known 1-D wire

- Also note that the presence of $+\mathrm{i}^{+}$or $-\mathrm{i} 0^{+}$in G and G^{+}respectively leads to a world of difference in the time domain. For our simple example G^{+} $G_{11}^{+}(t)=\frac{i}{\hbar} \theta(-t) e^{-i \varepsilon_{1} t / \hbar} e^{i 0^{+} t}$
- $[G(E)]$ in the time domain has a range of $0 \leq t<\infty$ and is usually called the "retarded Green's function."
[$\mathrm{G}(\mathrm{E})]^{+}$in the time domain has a range of $-\infty<\mathrm{t} \leq 0$ and is usually called the "advanced Green's function"

Green's Functions

Physical Interpretation of Σ

- We can also apply the concept of "impulse response" to gain insight into the physical meaning of Σ.
- Recall for the device region

$$
\begin{aligned}
& G=[E I-H-\Sigma]^{-1} \\
& \therefore[E I-H-\Sigma] G=I
\end{aligned}
$$

translated to the time domain this gives...

$$
\left(i \hbar \frac{\partial}{\partial t}-H-\Sigma\right) G(t)=I \delta(t)
$$

- Let us consider a single level device such that $[H]=\varepsilon$. Therefore we have

$$
\left(i \hbar \frac{\partial}{\partial t}-\varepsilon-\Sigma\right) G(t)=\delta(t)
$$

Thus,

$$
\begin{aligned}
& G(t)=e^{-i \varepsilon t / \hbar} e^{-i \Sigma t / \hbar} \theta(t) \\
& =e^{-i \varepsilon^{\prime} t / \hbar} e^{-\gamma t / 2 \hbar} \theta(t)
\end{aligned}
$$

where

$$
\begin{aligned}
& \varepsilon^{\prime}=\varepsilon+\operatorname{Re}\{\Sigma\} \\
& \gamma=-2 \operatorname{Im}\{\Sigma\}
\end{aligned}
$$

Physical Interpretation of Σ

- Physically the real part of Σ corresponds to an energy level shift in the device. The imaginary part (times -2) represents the rate at which an electron will leak out of the reservoir.
- From $\gamma=-2 \operatorname{Im}\{\Sigma\}$
we define the lifetime, τ, of an electron state as

$$
\frac{1}{\tau}=\frac{\gamma}{\hbar}
$$

such that

$$
G(t)=\theta(t) e^{i \varepsilon^{\prime} t / \hbar} e^{-t / 2 \tau}
$$

- Also, γ is related to the broadening of a level

such that there exists an "uncertainty" relation between lifetime and broadening

$$
\gamma \times t=\hbar
$$

Where Broadening Comes

 From- How do we know that γ is directly related to the broadening of a level?
- Well, $A(E)=i\left(G-G^{+}\right)$
and for our 1-level device
$G(E)=\frac{1}{E-\varepsilon^{\prime}+\frac{i \gamma}{2}}$
$\therefore \frac{A(E)}{2 \pi}=i\left(\frac{1}{E-\varepsilon^{\prime}+\frac{i \gamma}{2}}-\frac{1}{E-\varepsilon^{\prime}-\frac{i \gamma}{2}}\right)$
$=\frac{\gamma}{\left(E-\varepsilon^{\prime}\right)^{2}+\left(\frac{\gamma}{2}\right)^{2}}=D(E)$
Note: $D(E)=1 / 2 \pi$ Trace $[A(E)]$ in general, and for a 1-level device $D(E)=A(E) / 2 \pi$
- This is exactly the 1-level device DOS Lorentzian broadening discussed at the beginning of the course!

- Thus, the overall broadening effect (and lifetime) is described by the selfenergy, $\Sigma(E)$
- Next time: the role of $\pm i 0^{\circ}$

