Nanophotonics with Metamaterials

By Vladimir M. Shalaev

Electrical and Computer Engineering, Purdue University, West Lafayette, IN

Published on

Abstract

One of the most unique properties of light is that it can package information into a signal of zero mass and propagate it at the ultimate speed. It is, however, a daunting challenge to bring photonic devices to the nanometer scale because of the fundamental diffraction limit. Metamaterials can focus light down to the nanoscale and thus enable a family of new nanophotonic devices. Metamaterials, i.e. artificial materials with rationally designed geometry, composition, and arrangement of nanostructured building blocks called meta-“atoms,” are expected to open a gateway to unprecedented electromagnetic properties and functionalities that are unattainable with naturally occurring materials.

Cite this work

Researchers should cite this work as follows:

  • Vladimir M. Shalaev (2012), "Nanophotonics with Metamaterials," https://nanohub.org/resources/14182.

    BibTex | EndNote

Location

Stewart Center, Purdue University, West Lafayette, IN

Tags

Nanophotonics with Metamaterials
  • Nanophotonics with Metamaterials 1. Nanophotonics with Metamateria… 0
    00:00/00:00
  • Outline 2. Outline 220.66666666666666
    00:00/00:00
  • Electrical Metamaterials (Plasmonics): Route to Nanophotonics 3. Electrical Metamaterials (Plas… 425.36666666666667
    00:00/00:00
  • Why Plasmonics/Electric MMs? 4. Why Plasmonics/Electric MMs? 427.76666666666665
    00:00/00:00
  • Optical Antennae: Focusing Light to Nanoscale 5. Optical Antennae: Focusing Lig… 554.36666666666667
    00:00/00:00
  • Graphene-Based Optical Modulator 6. Graphene-Based Optical Modulat… 671.83333333333337
    00:00/00:00
  • Optical Nanolaser Enabled by SPASER 7. Optical Nanolaser Enabled by S… 754.0333333333333
    00:00/00:00
  • Metamagnetics for optical range 8. Metamagnetics for optical rang… 1008.3
    00:00/00:00
  • Artificial Magnetic Metamaterials for Visible 9. Artificial Magnetic Metamateri… 1076.7666666666667
    00:00/00:00
  • Visible Meta-Magnetics: from Red to Blue 10. Visible Meta-Magnetics: from R… 1149.6333333333334
    00:00/00:00
  • Optical Negative-Index Metamaterials 11. Optical Negative-Index Metamat… 1201.3333333333333
    00:00/00:00
  • Negative refractive index: A historical review 12. Negative refractive index: A h… 1208.5
    00:00/00:00
  • Metamaterials with Negative Refraction 13. Metamaterials with Negative Re… 1500.1666666666667
    00:00/00:00
  • Negative Permeability and Negative Permittivity 14. Negative Permeability and Nega… 1595.7
    00:00/00:00
  • Negative Refractive Index in Optics 15. Negative Refractive Index in O… 1647.3333333333333
    00:00/00:00
  • Active Negative-Index Metamaterials 16. Active Negative-Index Metamate… 1780.3666666666666
    00:00/00:00
  • FESEM Images 17. FESEM Images 1858
    00:00/00:00
  • Loss Free NiMs 18. Loss Free NiMs 1949.1
    00:00/00:00
  • Toward Better Materials for Negative Refraction (Boltasseva group) 19. Toward Better Materials for Ne… 2022.0666666666666
    00:00/00:00
  • Alternative Plasmonic Materials 20. Alternative Plasmonic Material… 2075.5
    00:00/00:00
  • Comparison: LSPR 21. Comparison: LSPR 2266.5333333333333
    00:00/00:00
  • New plasmonic materials 22. New plasmonic materials 2347.1333333333332
    00:00/00:00
  • Titanium Nitride 23. Titanium Nitride 2369.1
    00:00/00:00
  • Titanium Nitride 24. Titanium Nitride 2438.1666666666665
    00:00/00:00
  • Alternative Plasmonic Materials 25. Alternative Plasmonic Material… 2494.8
    00:00/00:00
  • What is the Best Material for… 26. What is the Best Material for… 2496.4666666666667
    00:00/00:00
  • What is the Best Material for… 27. What is the Best Material for… 2550.4666666666667
    00:00/00:00
  • Negative refraction in semiconductor-based metamaterials 28. Negative refraction in semicon… 2616.1666666666665
    00:00/00:00
  • Generalized Snell’s Law* and Negative Refraction with Plasmonic Nanoantennas *Capasso group 29. Generalized Snell’s Law* and… 2668.1
    00:00/00:00
  • Principle of least action 30. Principle of least action 2712.9333333333334
    00:00/00:00
  • Euler's formulation 31. Euler's formulation 2737.7
    00:00/00:00
  • Principle of least action → Fermat’s principle 32. Principle of least action → … 2797.5666666666666
    00:00/00:00
  • Generalized Snell’s law (Capasso group) 33. Generalized Snell’s law (Cap… 2840.3666666666668
    00:00/00:00
  • Generalized Snell’s law 34. Generalized Snell’s law 2998.7666666666669
    00:00/00:00
  • Generalized Snell’s law: experimental demonstrations by Capasso group 35. Generalized Snell’s law: exp… 3046.5666666666666
    00:00/00:00
  • Broadband light bending with plasmonic nanoantennas 36. Broadband light bending with p… 3071.5666666666666
    00:00/00:00
  • Full-wave simulation 37. Full-wave simulation 3099.4666666666667
    00:00/00:00
  • Incident angle sweep – refraction 38. Incident angle sweep – refra… 3126.3
    00:00/00:00
  • Incident angle sweep – reflection 39. Incident angle sweep – refle… 3168.4666666666667
    00:00/00:00
  • Broadband Negative Refraction 40. Broadband Negative Refraction 3183.6333333333332
    00:00/00:00
  • Summary: 41. Summary: 3204.1333333333332
    00:00/00:00