Published on

Abstract

One of the most unique properties of light is that it can package information into a signal of zero mass and propagate it at the ultimate speed. It is, however, a daunting challenge to bring photonic devices to the nanometer scale because of the fundamental diffraction limit. Metamaterials can focus light down to the nanoscale and thus enable a family of new nanophotonic devices. Metamaterials, i.e. artificial materials with rationally designed geometry, composition, and arrangement of nanostructured building blocks called meta-“atoms,” are expected to open a gateway to unprecedented electromagnetic properties and functionalities that are unattainable with naturally occurring materials.

Cite this work

Researchers should cite this work as follows:

  • Vladimir M. Shalaev (2012), "Nanophotonics with Metamaterials," https://nanohub.org/resources/14182.

    BibTex | EndNote

Location

Stewart Center, Purdue University, West Lafayette, IN

Tags

Nanophotonics with Metamaterials
  • Nanophotonics with Metamaterials 1. Nanophotonics with Metamateria… 0
    00:00/00:00
  • Outline 2. Outline 220.66666666666666
    00:00/00:00
  • Electrical Metamaterials (Plasmonics): Route to Nanophotonics 3. Electrical Metamaterials (Plas… 425.36666666666667
    00:00/00:00
  • Why Plasmonics/Electric MMs? 4. Why Plasmonics/Electric MMs? 427.76666666666665
    00:00/00:00
  • Optical Antennae: Focusing Light to Nanoscale 5. Optical Antennae: Focusing Lig… 554.36666666666667
    00:00/00:00
  • Graphene-Based Optical Modulator 6. Graphene-Based Optical Modulat… 671.83333333333337
    00:00/00:00
  • Optical Nanolaser Enabled by SPASER 7. Optical Nanolaser Enabled by S… 754.0333333333333
    00:00/00:00
  • Metamagnetics for optical range 8. Metamagnetics for optical rang… 1008.3
    00:00/00:00
  • Artificial Magnetic Metamaterials for Visible 9. Artificial Magnetic Metamateri… 1076.7666666666667
    00:00/00:00
  • Visible Meta-Magnetics: from Red to Blue 10. Visible Meta-Magnetics: from R… 1149.6333333333334
    00:00/00:00
  • Optical Negative-Index Metamaterials 11. Optical Negative-Index Metamat… 1201.3333333333333
    00:00/00:00
  • Negative refractive index: A historical review 12. Negative refractive index: A h… 1208.5
    00:00/00:00
  • Metamaterials with Negative Refraction 13. Metamaterials with Negative Re… 1500.1666666666667
    00:00/00:00
  • Negative Permeability and Negative Permittivity 14. Negative Permeability and Nega… 1595.7
    00:00/00:00
  • Negative Refractive Index in Optics 15. Negative Refractive Index in O… 1647.3333333333333
    00:00/00:00
  • Active Negative-Index Metamaterials 16. Active Negative-Index Metamate… 1780.3666666666666
    00:00/00:00
  • FESEM Images 17. FESEM Images 1858
    00:00/00:00
  • Loss Free NiMs 18. Loss Free NiMs 1949.1
    00:00/00:00
  • Toward Better Materials for Negative Refraction (Boltasseva group) 19. Toward Better Materials for Ne… 2022.0666666666666
    00:00/00:00
  • Alternative Plasmonic Materials 20. Alternative Plasmonic Material… 2075.5
    00:00/00:00
  • Comparison: LSPR 21. Comparison: LSPR 2266.5333333333333
    00:00/00:00
  • New plasmonic materials 22. New plasmonic materials 2347.1333333333332
    00:00/00:00
  • Titanium Nitride 23. Titanium Nitride 2369.1
    00:00/00:00
  • Titanium Nitride 24. Titanium Nitride 2438.1666666666665
    00:00/00:00
  • Alternative Plasmonic Materials 25. Alternative Plasmonic Material… 2494.8
    00:00/00:00
  • What is the Best Material for… 26. What is the Best Material for… 2496.4666666666667
    00:00/00:00
  • What is the Best Material for… 27. What is the Best Material for… 2550.4666666666667
    00:00/00:00
  • Negative refraction in semiconductor-based metamaterials 28. Negative refraction in semicon… 2616.1666666666665
    00:00/00:00
  • Generalized Snell’s Law* and Negative Refraction with Plasmonic Nanoantennas *Capasso group 29. Generalized Snell’s Law* and… 2668.1
    00:00/00:00
  • Principle of least action 30. Principle of least action 2712.9333333333334
    00:00/00:00
  • Euler's formulation 31. Euler's formulation 2737.7
    00:00/00:00
  • Principle of least action → Fermat’s principle 32. Principle of least action → … 2797.5666666666666
    00:00/00:00
  • Generalized Snell’s law (Capasso group) 33. Generalized Snell’s law (Cap… 2840.3666666666668
    00:00/00:00
  • Generalized Snell’s law 34. Generalized Snell’s law 2998.7666666666669
    00:00/00:00
  • Generalized Snell’s law: experimental demonstrations by Capasso group 35. Generalized Snell’s law: exp… 3046.5666666666666
    00:00/00:00
  • Broadband light bending with plasmonic nanoantennas 36. Broadband light bending with p… 3071.5666666666666
    00:00/00:00
  • Full-wave simulation 37. Full-wave simulation 3099.4666666666667
    00:00/00:00
  • Incident angle sweep – refraction 38. Incident angle sweep – refra… 3126.3
    00:00/00:00
  • Incident angle sweep – reflection 39. Incident angle sweep – refle… 3168.4666666666667
    00:00/00:00
  • Broadband Negative Refraction 40. Broadband Negative Refraction 3183.6333333333332
    00:00/00:00
  • Summary: 41. Summary: 3204.1333333333332
    00:00/00:00