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n + 1 n 

• The number of upwards 
transitions is proportional to n 
and the number of downward 
transitions to n+1, where

at T=0, n=0

Emission and Absorption
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• Ordinarily if we use the two levels for our 
basis functions, then the Hamiltonian will be 
diagonal. That would mean no transitions, 
because levels 1 and 2 would be  
completely decoupled from each other. For 
transition between levels, you need off 
diagonal elements such that there is 
coupling between levels. So the postulation 
is that because of the electromagnetic noise 
that is present, electron will be perturbed 
which is the scattering potential in [H]. The 
problem is that if you put any real potential, 
then its complex conjugate will be the other 
off-diagonal element; This means that the 
transitions form 1 to 2 and from 2 to 1 are 
equal. How ever what happens in 
equilibrium is that electrons relax at a much 
higher rate than they get excited.
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• That said, the emission/absorption 
process is much easier to understand in 
terms of a multi-particle electron-photon 
picture (as discussed in the previous 
lecture)

Note: With photons there is no exclusion 
principle
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Multi-Particle Levels
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• If you think of the atom as being 
in one big box, then photons in 
the box can be described by 
plane waves:
• The relationship between ω and 
β is linear. We have:
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• One photon state means having 
one photon at a particular 
frequency. N photon state means 
having N photons at that 
frequency.

Multi-Particle Picture
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• The continuous 
distribution of photons 
alters the 1-level picture 
from…

Dissipation into Photon Reservoir
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• This has important 
implications for photon 
emission from excited 
states

• Looking at the 0-photon state, when we put an 
electron in the upper level, ε2, it likes to spread out 
(broaden) into the adjacent level and then fall back 
down to ε1 giving up a photon in the process

• Importantly, this behavior can be viewed much the 
same as dissipation into a contact
• So the question is how one calculates the rate at 
which the electron goes away when it’s put in a state.

Dissipation
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Dissipation into Photon Reservoir
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• Because adjacent levels act as photon 
reservoirs we may use the Green’s function 
formalism to derive the radiative lifetime of an 
electron

• So we can use the self-
energy expression

and to get an estimate of the 
lifetime take

The process may be viewed 
as |2,0ph> |1,1ph>
where radiative lifetime is like 
another self-energy
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Lifetime
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• Note: τ is a physical quantity which constitutes the coupling between levels and τγ
is the escape rate of electron from one state to another.

• Where is the photon reservoir spectral function a.
• Imposing periodic boundary this summation may be transformed into an integral
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• Formally, therefore the broadening
of the 0-photon state is given as:
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(V is the volume)

Coupling
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• Thus,

• Now, to write the potential we use 
the well known relationship

• To arrive at an expression for 
coupling between the 0-photon and 1-
photon state we must consider the 
potential that an electron feels due to 
one photon
• The electric field of a single photon 
with wave vector      is

We want to know if the box had just 
one photon, then what electric field 
would be present. One way to do this 
is to look at the total energy in the EM 
wave:

where V is the volume of the box 
containing the photon
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Deriving the Coupling
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• To find the coupling term we need to 
know how much the Hamiltonian 
changed due to addition of one 

photon. Expanding 1:

• So the Hamiltonian becomes:

• Note, however, that the potential 
created by a photon is a vector 
potential and may not be simply added 
to the Schrödinger equation as the 
typical electro-static scalar potential 
we are familiar with.

• General Approach:
A scalar potential, U, is included in 

the Hamiltonian as

and the EM vector potential,     , asA
v
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Vector Potentials and the 
Schrödinger Equation
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• And the off diagonal elements 
of the Hamiltonian give coupling 
elements

• To be continued next time…

• As done earlier, we adopt

thus the addition to Hamiltonian is 

• Furthermore we denote                        as the absorption term and                       
as the emission term.

• So for the coupling element we have:
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Coupling Element
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