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Summarizing previous lectures

* We want to calculate the rate at which an
electron in an upper level relaxes to a
lower level and emits light.

* There are two views which may be
used to understand this phenomena:

1. The one-particle picture (Easy to
understand but conceptually problematic):

» The reason electron relaxes from
2 to 1 is because it feels some

potential due to the surroundings. This
potential is the scattering potential in the
Hamiltonian matrix. But to explain what we
observe the potential that relaxes the
electron should be bigger than the one
exciting it.

* The 1-level picture:
- Results in a non-Hermitian
Hamiltonian matrix
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Note: N is the number of photons

present such that




2. The multi-particle picture (More
difficult to understand):

 Radiative lifetime is understood in
terms of N to N+1 photon system
transitions. Notice that in that big
system N and N+1 are degenerate
levels and any small coupling will

take electron to the other level. We
will use this picture to write down
the appropriate radiative lifetime.
For this we can use the ideas that
we used when discussing contacts:

* We can apply the NEGF method
to a multi-particle system formed
as a product of the n electron and
N photon, that is

In,N> = |n>®|N>

» With NEGF one may calculate both
broadening and the transition rate
i.e. for the zero photon subspace
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» So we need to find the coupling |K| in
I'= n_ Z‘K‘25(52 — g, —hw)
T
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* This view is not exact since the N
photon subspace is coupled to the N+1
subspace which is in turn coupled to
the N+2 subspace, etc. And this will
result in not completely accurate
spectral function a.

 To calculate coupling between the
0-photon and 1-photon states we use
the vector potential due to 1 photon:
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Note: Due to canceling terms the
final expression for I' is independent
of the volume of the box Q
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as the absorption term and
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as the emission term
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* Thus, the emission coupling term is
:df¢1* (q/m)(Aem : Ij)¢2 (f)
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Note: from the original operator
([3 + qA)' (r) + qA)/zm

we neglect A-A asitis assumed to be
very small and for




. Tp evaluatg K. ps We simply replace
a/fT by o187 In K,

* SO0 now we know how to add a
vector potential to the Schrodinger
equation

* Phonons induce scalar rather than
vector potentials and are much more
easily incorporated into the
Schrodinger equation

 However, ei'ﬂ'r is often ignored when
analyzing effects on the atomic scale
because B varies on the scale of
microns and #;, on the scale of
angstroms. This leads to the
approximation

Y

em/abs — m V- p

where D = [drg; (1), 1)
and P =—ihV




» For example consider emission
from the degenerate hydrogen 2s,
2px, 2py, 2pz levels to the 1s level

* First note,

) SOIVing for p in Kem/abs :(q'Ab/zm)\7 p
we can see that 2s—>1s emission is
isotropic and the remainder (2px—>1s,

2py—=>1s, and 2pz—>1s) are polarized




* For2s>1spis...

p =Idf : e‘r/‘%(
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= xConst .. Isotropic

* For2p,21sp is...

p=[dr— ef/ao[xﬁwiﬁa] : [X .
7 ox ~oy 0z).\16m; \ 8

= Xx Const .. Polarizedin X direction

* Likewise for 2p > 1s we get polarization in the)7 direction and for 2p,>1s
polarization in the Z direction




* Summary:

e 2p,~1s emits in the (y,z) plane.
2p,~1s emits in the (x,z) plane
2p,—~>1s emits in the (x,y) plane

Transition

25>1s f (isotropic)

2px>1s * In a sense atomic transitions such
2py>1s as these behave just like a classical
dipole such that

2pz>1s

\ /

 Polarization limits the emission
vector of a photon to the plane
perpendicular to the direction of
polarization

Often we refer to this as an atomic
dipole




* In the actual hydrogen atom an
electron in fact spreads out evenly
amongst the 2px, 2py, and 2pz level
resulting in isotropic emission.

* Note, a coupling exists between the
1s and (2px,2py,2pz) levels whose
resulting self energy creates a small

energy shift between the two levels.
Hence, in actuality the s and p levels
are in fact not degenerate

* Interestingly, one may also examine
transitions between two extended
states (not atomic wave functions).
Such events are often referred to as
intraband transitions. The intraband
coupling term expressed in its
simplest form is:




* Note that for
[ AEALiBT A=K T (= B\atHKT
Kem/abs - jdre € (p .V)e

coupling will be non-zero iff K—k'+ /B = (). This follows from the fact that

ei(lZ—k'iB)r

Furthermore, the relation affects the broadening term, I". For delta function to
have any contribution, the argument must be 0. Thus we have:

£ =& —haoyg } emission

£ =& thog | absorption




* So, to make an intraband transition, the
final energy, 5|z', equals the initial
energy, £, plus or minus 1@,

» Mathematically we can show that
intraband transitions occur only if
the electron travels faster than the
speed of light in the medium of
interest. Usually this is called
Cerenkov radiation. Cerenkov
radiation is permitted in many
solids because the speed of light is
a fraction of that in a vacuum (i.e.
¥5). This effect also applies to the
speed of sound and results in the
frequent emission of phonons
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