
Quantum Transport:Quantum Transport:
Atom to Transistor

Prof. Supriyo Datta
ECE 659
Purdue University

Network for Computational Nanotechnology

04.21.2003

Lecture 36: Radiative Transitions
Ref. Chapter 10.1 & 10.2



• The 1-level picture:
Results in a non-Hermitian 

Hamiltonian matrix

where [US]12α(N+1) and 
[US]21α(N)

Note: N is the number of photons 
present such that
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Summarizing previous lectures
• We want to calculate the rate at which an 
electron in an upper level relaxes to a 
lower level and emits light. 
• There are two views which may be
used to understand this phenomena:
1. The one-particle picture (Easy to 
understand but conceptually problematic):
• The reason electron relaxes from
2 to 1 is because it feels some
potential due to the surroundings. This 
potential is the scattering potential in the 
Hamiltonian matrix. But to explain what we 
observe the potential that relaxes the 
electron should be bigger than the one 
exciting it. 
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2. The multi-particle picture (More 
difficult to understand):

• Radiative lifetime is understood in 
terms of N to N+1 photon system 
transitions. Notice that in that big 
system N and N+1 are degenerate 
levels and any small coupling will 
take electron to the other level. We 
will use this picture to write down 
the appropriate radiative lifetime. 
For this we can use the ideas that 
we used when discussing contacts:
• We can apply the NEGF method 
to a multi-particle system formed 
as a product of the n electron and 
N photon, that is
|n,N> = |n>⊗|N>

• With NEGF one may calculate both 
broadening and the transition rate
i.e. for the zero photon subspace
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• So we need to find the coupling |K| in • To calculate coupling between the 
0-photon and 1-photon states we use 
the vector potential due  to 1 photon:

where

Note: Due to canceling terms the 
final expression for Г is independent 
of the volume of the box Ω
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• This view is not exact since the N 
photon subspace is coupled to the N+1 
subspace which is in turn coupled to 
the N+2 subspace, etc. And this will 
result in not completely accurate 
spectral function a.
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• In the photon vector potential we 
denote

as the absorption term and

as the emission term

• Thus, the emission coupling term is

Note: from the original operator

we neglect           as it is assumed to be 
very small and for

we have   
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• However,           is often ignored when 
analyzing effects on the atomic scale 
because     varies on the scale of 
microns and       on the scale of 
angstroms.  This leads to the 
approximation

where

and

• To evaluate Kabs we simply replace
by           in Kem

• So now we know how to add a 
vector potential to the Schrödinger 
equation

• Phonons induce scalar rather than 
vector potentials and are much more 
easily incorporated into the 
Schrödinger equation
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• Also,

• Solving for      in
we can see that 2s 1s emission is 
isotropic and the remainder (2px 1s, 
2py 1s, and 2pz 1s) are polarized

• For example consider emission 
from the degenerate hydrogen 2s, 
2px, 2py, 2pz levels to the 1s level

• First note,
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• For 2s 1s    is…pv
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• For 2px 1s     is…pv

direction ˆin  PolarizedConst   ˆ
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• Likewise for 2py 1s we get polarization in the    direction and for 2pz 1s 
polarization in the    direction
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• Thus, 
2px 1s emits in the (y,z) plane. 
2py 1s emits in the (x,z) plane
2pz 1s emits in the (x,y) plane

• In a sense atomic transitions such 
as these behave just like a classical 
dipole such that

Often we refer to this as an atomic 
dipole

• Summary:

• Polarization limits the emission 
vector of a photon to the plane 
perpendicular to the direction of 
polarization
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• Interestingly, one may also examine 
transitions between two extended 
states (not atomic wave functions).  
Such events are often referred to as 
intraband transitions.  The intraband 
coupling term expressed in its 
simplest form is:

• In the actual hydrogen atom an 
electron in fact spreads out evenly 
amongst the 2px, 2py, and 2pz level 
resulting in isotropic emission.
• Note, a coupling exists between the 
1s and (2px,2py,2pz) levels whose 
resulting self energy creates a small 
energy shift between the two levels.  
Hence, in actuality the s and p levels 
are in fact not degenerate
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• Note that for 

coupling will be non-zero iff .  This follows from the fact that

integrated over        is non-zero iff . 

Furthermore, the relation affects the broadening term, Γ. For delta function to 
have any contribution, the argument must be 0. Thus we have: 
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• Mathematically we can show that 
intraband transitions occur only if 
the electron travels faster than the 
speed of light in the medium of 
interest.  Usually this is called 
Cerenkov radiation.  Cerenkov 
radiation is permitted in many 
solids because the speed of light is 
a fraction of that in a vacuum (i.e. 
⅓).  This effect also applies to the 
speed of sound and results in the 
frequent emission of phonons 

• So, to make an intraband transition, the 
final energy,        , equals the initial 
energy,       ,  plus or minus 
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