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Please note that this lecture overlaps with lecture 41; Hence the number 41A. The main difference is that this one includes the discussion on the origin 
of the General Principle of Statistical Mechanics.



• Everything we have discussed so far 
has been based upon the self-
consistent field picture.  The self-
consistent field is an approximate 
solution to the electron-electron 
interaction problem

• Over the years many self-consistent 
field approximations have been 
developed, the lowest order 
approximation being Poisson’s 
equation
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• Now imagine a device with only one 
energy level (or two spin levels) 
coupled to two contacts (source and 
drain) via γ1 and γ2
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• This device has a single electron charging 
energy of U = q/C, where C is the effective 
capacitance

• U is very small when dealing 
with large structures, but for 
small structures, such as atoms, 
it can become very large.  In 
fact U can become so large that 
it actually exceeds the level 
broadening and we call this 
regime Coulomb Blockade
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• For small U the single level device 
gives a conduction distribution and 
electron count as shown on the 
right.  Note: The conductance peak 
has a width of γ1 + γ2 + 2U, where 
the electron charging energy is 
included twice
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• Whereas for large U, the coulomb 
blockade regime, we get a double 
peak and step for the conductance 
and electron count respectively
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• For the diagram on the left, 
effectively the down spin level is filled 
first and the second electron, which 
will enter the up spin level, feels a 
charging energy of U = q/c.  This 
charging energy, when large, creates 
an observable split in the spin levels 
and hence the observed coulomb 
blockade.

Note: The down spin only fills first for 
the purposes of this example; it is 
equally likely that the up spin level 
should fill first
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• Why does the coulomb blockade 
occur for large U?  It happens because 
we really have two levels, rather than 
one level holding two electrons, a spin 
up and a spin down level
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• Main Idea Continued:
If we think of this as one big system, 

then we have 4 states with the following 
energies

• However, all of this is better 
explained using the multi-electron 
picture

• Main Idea:
Let’s say we have two particle 

levels, spin up and spin down, 
where each one can hold a single 
electron

Spin up 
and spin 
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• Now under an applied VG the states 
are…

• So as we apply a gate voltage the 
system will go from the 0 electron to 
a 1 electron to the 2 electron state.  
To describe this process we need to 
apply the general principle of 
statistical mechanics
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A one level 
system has the 
following 
probabilities for 
states 0 and 
1…

• Definition:

represents the probability that 
the system is in a particular state 
with energy E and number of 
particles N. Note: Z is the 
partition function, it guarantees 
that the sum of all probabilities is 
1

• Example:
We can show how the fermi
function follows from this in a 
one (spin) level system
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• Now if we take the average of these 
probabilities we get

which is the fermi function!  This 
result can be applied to any multi-
electron system.  In essence the 
fermi function represents the average 
value of P(E,N) across all electron 
states.  The same approach applied 
to photons, which has no exclusion 
principle, leads to the Bose function

• We may calculate the partition 
function via the equality

and the final probabilities are:
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• Why is this true?
Example: Take two states, the first for 
which

and the second

and since e-100 << e-50, 
z = (e-100 + e-50) ≈ e-50

∴P50 = 1 and P100 = 0
so we see that the min(E-μN) probability 
dominates as ≈ 1

• Now let’s return to the central 
problem with an additional 
simplification, that is, we will 
concern ourselves only with low 
temperatures such that the 
probability of any state being 
occupied is either 0 or 1.  (since 
kBT 0)

• So, the probability will be 1 for that 
state which has the minimum value 
of (E-μN)
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• Main Idea: At low temperatures we are only 
concerned with min(E-μN), that is the state 
which will be occupied

• So, for a 2-spin device, with applied VG, the 
values of (E-μN) are…
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• Where the device is as 
stated earlier…
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• Of course the system begins in state 00.  
Now, as VG is applied, ε-qVG-μ gets smaller 
and smaller.  The system begins to enter the 
01 and 10 states (50/50 split) at ε-qVG-μ = 0 or 
qVG = ε-μ

• Similarly, as we increase the gate voltage 
further 2(ε-qVG-μ)+U becomes even more 
negative at a greater rate than (ε-qVG-μ) and 
begins to dominate at 2(ε-qVG-μ)+U = ε-qVG-μ
or qVG = ε-μ+U
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• Final Picture: we see via the multiparticle viewpoint how coulomb blockade arises:

Coulomb Blockade with Multiparticle States
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• Note: The 00, 10, 01, 11 levels are not like single particle levels – do not confuse 
them (it’s a full multi-electron picture)
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• This multi-electron picture is 
exact but problematic due to its 
size.  The number of states 
under consideration increases 
exponentially, that is at 2N, and 
even with 12 electrons we have 
well over 1000 states to 
consider

• Often it is difficult to get a good 
intuitive feeling out of the multi-
electron picture, that’s why we 
use the single electron picture • Because the single electron picture is 

based upon experimental evidence it can 
be used in cases where it is either 
impossible or impractical to apply the multi-
electron picture
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• The multi-electron picture has an equivalent single electron picture for each non-
degenerate state.  For the 2-spin levels this means 3 single electron pictures from 
the multiparticle picture…
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• Next: Where does

come from?

• Consider its meaning, this 
equation states that if you have a 
system in equilibrium with a 
reservoir then the probability that 
it will be in a particular state is 
proportional to e-E/kBT

• For instance the two level system below 
gives
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• Now, the system wants to go to 
the lowest possible energy (lower 
energy states are more probable)

• Why is this?
Basic Idea: If you have a large 
reservoir you can think of it as 
possessing some continuous 
Density of States (DOS).  As 
well, view the reservoir DOS and 
the attached system as one big 
system
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• Basic Idea Cont’d: So if the 
system is at E1 then the reservoir 
is at some energy E-E1 and 
similarly for E2 it would be at E-
E2.  But from the point of view of 
the reservoir E1 is much more 
likely because it has a higher 
DOS than E2!

• Problem: How do we know that 
the DOS is an increasing 
function of E?
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• Why do we have the DOS as an 
increasing function of E?

• Let’s assume with energy 
proportional to a distribution of 
the type ħ2k2/2m (reasonable for 
most solids).  Thus for one, two, 
and three dimensions the number 
of electron states available is 
proportional to E½, E1 and E3/2

respectively 

• And in general for n degrees of freedom 
the number of states available is 

NT = CEn/2 (c is a constant).  

We take the derivative to get the DOS 

D(E) = cEn/2-1 ≈ cEn/2

for large n.  Thus, 

D(E) = cEn/2 = c exp(n/2 ln E)
and the DOS is shown to be an increasing 
function of E

Why an Increasing DOS?
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• From the DOS we can derive P1/P2 since

• Taylor expand D(E) about E0 (an energy 
between E1 and E2)

• Recall, E is the energy of 
the reservoir and n is the 
number of degrees of 
freedom, thus n/(2E0) 
represents ½ the inverse 
average energy per degree 
of freedom.  But from 
statistical mechanics we 
know that the average 
energy per degree of 
freedom is ½kBT
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• Hence E0/n = ½kBT and 

so we see the basis for the P(E,N) and the fermi function.  Furthermore, this shows 
that the complexity and size of a system does not affect the probability of states.  It 
is a property of the reservoir, the statistical model is valid even for one level 

Next Lecture:  Spin
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