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• In this lecture, we’ll discuss 
electron spin

• Recall, when deriving current 
through a small structure, like 
that show on the right, we first 
obtain a Hamiltonian [H].  
Usually, however, the 
eigenenergies of [H] represent 
two degenerate spin levels

• The proper Hamiltonian for degenerate 
spin levels is twice as big

with no coupling between the spin up and 
spin down portions
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• We want to consider the conditions 
for which the spin levels are not 
degenerate.  There are two cases 
by which this arises

• Case 1: Strong Electron-Electron 
Interactions (i.e. Coulomb Blockade)

Because electrons are forced to 
interact strongly instead of 2 
degenerate levels…

… we have two split levels…

the first level fills
and forces the
second up

Important Example: Magnetism.  
All electrons want to have the same 
spin due to electron-electron 
interactions.

Strong Electron 
Interactions
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• Case 2: Spin Orbit Interaction 

This has nothing to do with 
electron-electron interactions and is 
the focus of the remainder of this 
lecture.

• Continuing with spin-orbit 
interaction…

Ordinarily the Hamiltonian is

• When a magnetic field is applied, 
say in the   direction, up and down 
spin levels do not remain degenerate 
so we add

where μB is the Bohr magneton
constant           .  A well known 
example of this is the Zeeman effect
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• If we apply a magnetic field in the x-
direction as well the additional term 
becomes

• To summarize, the     magnetic field 
gives

• … and the    magnetic field gives

These matrices have the same 
eigenenergies but different 
eigenvectors.  The eigenenergies
are

+μBBz, -μBBz,
+μBBx, -μBBx
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The eigenvectors are …

direction 

direction 

• One might imagine that we could 
have written the additional term as

this model does explain the 
Zeeman effect but fails under what 
is known as the Stern-Gerlach
experiment
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• Example Continued:
And if we add another 
inhomogeneous, say in the x-
direction, the beam splits again

• In the Stern-Gerlach experiment a 
beam of electrons is injected into an 
inhomogeneous magnetic field, due to 
spin interaction the beam splits after 
entering the magnetic field.
Example: A beam of electrons split by 
an inhomogeneous    magnetic fieldẑ
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• Overall the correct term, 
valid for any direction, added 
to the Hamiltonian is

Note, regardless of magnetic 
field direction the splitting 
effect is the same though the 
eigenvalues may vary

• Often this matrix is written as

where 
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• Moving on we can define 
spin-orbit interaction…

• Recall, an electric field may 
be expressed as

and a magnetic field as

• A scalar potential, U, is 
simply added into the 
Schrödinger equation

• But a vector potential,     , is incorporated 
as a dot product with the momentum vector     

, i.e. 
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• Interestingly, even when there is 
no magnetic field a strong electric 
field can induce an effective
magnetic field on an electron.  This 
phenomena occurs due to 
relativistic interactions between an 
electron and the applied electric 
field. Interaction between the 
electric field of the nucleus and 
electrons of an atom is a very 
good example of this.  We call this 
effect “Spin-Orbit Interaction”

• Spin-Orbit Interaction is incorporated 
into the system Hamiltonian with the term

• Note: Even in a weak electric field spin-
orbit interaction is present but generally 
is too small to deserve any consideration
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• Spin-Orbit coupling plays a 
fundamental role in our understanding 
of semiconductor physics

• Given a semiconductor with an E-k 
diagram like the following…

• … If we were to examine the area 
right around the “dot” we would find 
that conduction band was formed of 
|s> orbitals and the valence band of 
|p> orbitals (|px>,|py>,|pz> or in 
another notation |x>, |y>, |z>)

E
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Semiconductors
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• Ignoring spin orbit coupling one might 
assume semiconductor valence bands 
of the form |x>, |y>, and |z> separately.
If this were the case then a transition 
from the conduction band, |s>, to say 
|x> would be polarized in the x 
direction.  Furthermore, since there is 
no preference in transition to the 
valence band y-polarized and z-
polarized light should be equally likely 
resulting in overall isotropic emission

• However, this is not the case, 
emission is not isotropic but in fact 
circularly polarized.  We cannot 
ignore spin-orbit 
coupling/interactions.  When 
included, spin-orbit coupling 
provides an entirely different (but 
correct) set of valence bands that 
accurately predict the circularly 
polarized light emitted from in 
semiconductors

Isotropic Emission
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• The first valence band 
derived with spin-orbit 
coupling is

and

we call this the heavy hole 
band.  We will ignore the 
other valence bands (light 
hole) for now since most 
optical transitions occur to 
and from the heavy hole band

Heavy Hole Band

E
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• Note: The |s> 
conduction orbital is 
not usually affected by 
spin-orbit coupling
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will produce circularly 
polarized light in the x-
y plane.  So we see 
what a dramatic 
physical effect spin-
orbit coupling can have 
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• Important Point: Even when 
electrons travel at a fraction of 
the speed of light relativistic 
phenomena can produce 
observable effects on spin

• Note: In some 
semiconductors, such as InAs, 
spin-orbit interaction can alter 
even the conduction band

• So how does one make sense of the spin-
orbit interaction term

• To begin, look at the vector term in the 
Hamiltonian (ignoring the spin-orbit term 
and any scalar potential U):

where I is a 2x2 matrix
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• Note that 

is equivalent to

where     is composed of the Pauli spin 
matrices

• Furthermore, without any vector potential
,
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• But if we include     and apply a 
few dot and cross product 
identities to the familiar             
term in is produced

• Point:              is related to the 
general vector Hamiltonian and 
does not simply appear from 
nowhere
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• Now, the spin-orbit interaction term

is relativistic and can only be derived from the 
full relativistic Hamiltonian

• The full relativistic Hamiltonian, otherwise 
known as the Dirac equation, is 

Note: I is the 2x2 identitiy matrix, c is the 
velocity of light, and     is replaced by          
when a magnetic field is applied
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• So how do we get the 
familiar, low velocity, 
Schrödinger equation

from the Dirac equation?
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• Recall, the E-k 
relationship at low 
electron energies, for 
which

is valid looks like…

• Whereas the high energy Dirac equation produces 
an E-k relationship of the form…
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a position
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bottom band 
filled with 
electrons

• Note however, that moving to the top band 
requires an energy equal to 2mc2 (on the 
order of 1MeV)

• For the most part, outside 
high energy experiments, only 
a few electrons reside in the 
top-band.  Importantly, we can 
greatly simplify the Dirac
equation by concentrating on 
the few electrons in the top 
band and ignore the bottom 
band completely.  Based on 
this assumption we can derive 
the familiar low energy 
Hamiltonian.

Only a Few at the Top
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• Conceptually, in the low energy regime we 
can concentrate on term in the Dirac
Equation

and treat terms , , and as a self-
energy

• Recall, for any system, H, coupled to a 
larger system, HR, we may define a self-
energy
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• Furthermore, since the electrons we 
are concentrating on, which lie in the top 
band, have an energy around mc2 we 
may make the approximation E=mc2.  
Thus, 

• So, overall the non-relativistic first-
order Hamiltonian is 
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• But mc2I, as constant, may be 
ignored which gives the familiar

• To include spin-orbit interactions 
we need to improve our 
approximation for E, that is E ≈
mc2, to something more accurate
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• Including a more accurate representation of E complicates the algebra 
considerably, nonetheless by including a next order approximation of E we 
are able to derive the familiar spin-orbit interaction term 

from the Dirac equation

• Main Point: Spin-orbit interactions, magnetic interaction, vector potentials, 
etc. all follow from the Dirac equation and are all fundamentally related
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