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• The objective is to calculate the 
electron density as a function of gate 
voltage.
• Quantum Mechanical way at 
equilibrium:
• Effective mass Hamiltonian for this 
device:

( )IHf μρ −= 0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−+−

−+

t
ttEt

ttE

c

c

2
2

n*n
. . .

. ...

..

• To get the complete picture, this has 
to be solved self consistently with 
Poisson equation because the 
surrounding imposes a potential and 
that has to be included.

Electromagnetic Texts

Our Form

• Allowing variation of dielectric 
constant,

• Self Consistent Solution
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• Given a particular H, we want to find 
the electron density matrix whose 
diagonal elements are electron 
densities at different points. 
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• Electron density in a homogeneous 
material

• Note that for differential equations 
with constant coefficients, solutions 
can be written as plane waves.  
• Solution

• What this tells us is that for a 
homogeneous solid the electron 
density is position invariant. 
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• Periodic versus box boundary 
conditions:

• n(r) for box boundary 
conditions:

• n(r) for periodic boundary 
conditions:
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• We’ll assume x and y dimensions to be 
infinite and use periodic boundary 
conditions for them. How ever we want to 
treat z more carefully. 
• Eigen Functions:
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• We want to find eigen functions in z 
direction,

• The plane waves in x and y direction 
satisfy the following:

• Replace x with y to get the expression 
for y. 

• Remember we are assuming that
the potential is separable in x, y and z 
and therefore Schrödinger equation can 
be broken into three coordinates.
• For homogenous material we had:
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• For our device,

In this case summing the Fermi 
functions over the two dimensions of 
x and y can be done analytically.

• Schrödinger

• Poisson
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• Schrödinger

• Poisson

• What we are after is to monitor the 
electron density as the gate voltage 
changes. But how can we see the 
effect of these changes in our 
equations?
• Answer: The additional term 
(boundary term of the Poisson 
equation), which depends on VG .
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• Next day we will discuss the physics 
behind this. i.e. when you change the 
gate voltage what determines the rate 
at which electron density changes. We 
will also discuss the quantum 
capacitance which is a very important 
physical concept.
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• Now we want to talk about the       
function:

• We want to evaluate this summation:

• For big devices, we convert to integral,
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• Where 

• Since the integrand does not 
depend on the angle of k, but only 
its magnitude, we can do the 
integral in spherical coordinates.

• Then,
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• Similar integral comes up in the case of a 
homogenous material and we have to sum over 
a three dimensional k vector.

How ever in this case the integral doesn’t come 
out to be as simple and it cannot be done 
analytically. It can be tabulated and found 
numerically. 
• For the integrand in three dimensions, instead 
of kdk, you’ll have k2 dk and after the change of 
variable, we end up with dx√x which can’t be 
solved analytically. This is tabulated and is 
called “f half” integral. 
• In one dimensional case we end up with dx√x
which is called “f  minus half” integral. It is worth 
remembering the important result of how to do the 
summation over the Fermi function analytically.
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• Details of integration:
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