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- The objective is to calculate the
electron density as a function of gate
voltage.

» Quantum Mechanical way at
equilibrium: p = f,(H — ul)

» Effective mass Hamiltonian for this

device: |E.*2t -t R
~t E +2t -t

N

« To get the complete picture, this has
to be solved self consistently with
Poisson equation because the
surrounding imposes a potential and
that has to be included.
H=H,+U

V2.V = — P Electromagnetic Texts
U=-qgV

£
_v2.U = qzﬂ Our Form
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* Allowing variation of dielectric

constant,

~-V-(sVU)=g"n
» Self Consistent Solution
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 Given a particular H, we want to find
the electron density matrix whose
diagonal elements are electron
densities at different points.

p=f(H-pul)=

« Electron density in a homogeneous
material

Homogeneous
Silicon

Vz]wa =&Y,

* Note that for differential equations
with constant coefficients, solutions
can be written as plane waves.
 Solution

» What this tells us is that for a
homogeneous solid the electron
density is position invariant.
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 Periodic versus box boundary
conditions:

* n(r) for box boundary
conditions:

~N

»

electron density
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* n(r) for periodic boundary
conditions:

~

electron density
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First and second
eigen functions in z
direction

« We'll assume x and y dimensions to be
infinite and use periodic boundary
conditions for them. How ever we want to
treat z more carefully.
 Eigen Functions:
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- For our device,
n(r)=

k%r:nl_j_yvm(z)‘z fO(gm TE _,U)

In this case summing the Fermi
functions over the two dimensions of
x and y can be done analytically.

» Schrddinger

&L )l

2m. dz

n(z) =Y |4.(2) f,0(e0 — 1)

* Poisson

» We want to find eigen functions in z
direction, nod°

{EC—REW(Z)}%(ZEE@(Z)

* The plane waves in x and y direction
satisfy the following:

2 21,2
d jeikxx _ h kx eikxx
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* Replace x with y to get the expression

fory.
 Remember we are assuming that
the potential is separable in x, y and z
and therefore Schrodinger equation can
be broken into three coordinates.
* For homogenous material we had:

n(r)= >

1 fO(ga
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* Schrodinger
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* What we are after is to monitor the

electron density as the gate voltage * Next day we will discuss the physics
changes. But how can we see the behind this. i.e. when you change the
effect of these changes in our gate voltage what determines the rate
equations? at which electron density changes. We
* Answer: The additional term will also discuss the quantum
(boundary term of the Poisson capacitance which is a very important
equation), which depends on VG . physical concept.
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« Now we want to talk about the
function: f,,
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» Since the integrand dogs not
depend on the angle of k, but only
its magnitude, we can do the
integral in spherical coordinates.

* Then,
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dX
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 Details of integration:
C’j-)27zktdkt 1
4z ? 1+ Ae”
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- Similar integral comes up in the case of a
homogenous material and we have to sum over

a three dimensional k vector.
1
w, LyL,L,

How ever in this case the integral doesn’'t come
out to be as simple and it cannot be done
analytically. It can be tabulated and found
numerically.

* For the integrand in three dimensions, instead

of kdk, you’ll have k? dk and after the change of

variable, we end up with dxv&X which can’t be
solved analytically. This is tabulated and is
called “f half” integral.

* In one dimensional case we end up with dx\x
which is called “f minus half” integral. It is worth

remembering the important result of how to do the
summation over the Fermi function analytically.
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