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• System at equilibrium: source and 
drain shorted together.
• Last day we discussed how 
electron density changes as a 
response to a certain gate 
potential. Today we’ll discuss the 
physics behind this. 
• The usual procedure is to use the 
Schrödinger / Poisson solver. 

• Assuming the x and y directions to be 
infinite; hence getting the periodic 
boundary conditions and solving the 1D 
problem we derived at:
• Schrödinger

• Solving the Schrödinger equation for x 
and y results in plane wave solutions. The 
main effect of the x, y part appears in the 
f2D function in the above equation.
• From previous day we have:
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• Hamiltonian in the Schrödinger equation
H0                        +       U(z)

• Self Consistent Solution

• To solve this problem 
numerically we set up a lattice. 
For instance you can have 50 
lattice points across the device in 
the z direction which would give 
you a 50*50 Hamiltonian matrix. 

• Same goes for U(z); namely we will have 
a 50*50 diagonal matrix whose diagonal 
elements give us the potential at different 
lattice points. 
• Notice that U(z) is purely diagonal while 
the Hamiltonian is not because it does 
include the interaction of lattice points with 
their nearest neighbors. These interactions 
are represented by off-diagonal terms.

From PoissonDescribes the channel and the insulator
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Poisson / Boltzmann

• For the purpose of comparison it 
is useful to do a semi-classical 
calculation because standard 
device solvers (Poisson / Boltzman 
solvers) use this method.

Poisson/ Boltzman Solver

Uniform Silicon in 3D

For n we have:
• Ec is the bottom of conduction 
band and in the presence of a 
constant potential, it will float up.

Then:

• The semi-classical approximation goes 
like this: if the potential is varying with 
position (in our case in the z direction) 
then n also is changing with position. 
Therefore,

One might miss the quantum effects but 
for thick devices this method gives a good 
approximation. 

• For very small devices, the difference 
between the quantum mechanical 
solution and the semi-classical approach 
becomes more distinct. One can compare 
the two methods by investigating the 
resulting electron density form each 
solution. 
• On the next page we will look at this 
crucial difference. 
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• Wave function goes to 0 at the 
boundaries; therefore electron density 
will be 0 at the boundaries.
• For big devices the quantum solution 
will have the various Fourier 
components which add up together 
and give rise to an electron density 
looking like the semi-classical solution. 
Remember that the device has to be 
sufficiently wide.

• There is no concept of wave function 
here. Electron density has a pick at 
the boundary. Intuitively, one can 
think of this as the electron pill-up at 
the boundary due to a positive gate 
voltage. This is the concept of Delta 
Function approximation discussed in 
Semiconductor Device texts. 

Quantum Mechanical Approach Semi-Classical Approach
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• Having n(z), the next step is to 
calculate n(s) which is the electron 
density per unit area.

• The motivation for doing this comes 
from the fact that if you think of the 
device as a capacitor, the n(s) will give 
you charge density per unit area and 
you’ll have a capacitance per unit area..

VG Changes the average potential 
inside the channel
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• The slope goes as exp(-E/kT).
(as you know the Fermi function 
becomes this exponential via 
Boltzmann approximation.)
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• As the potential U is changed inside the 
channel, the probability of electron filling the 
bottom of conduction band changes as                
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• On the log(ns) vs. VG plot, in the off 
region, the electron density changes at the 
rate of one decade per 60meV.
• Important Issue: Is there any way of 
getting a rate higher than one decade per 
60meV for small devices? This is of 
significance because as devices are 
getting smaller, smaller operating power is 
desired, hence a smaller voltage range is 
available. At the current rate, it takes 
300meV to turn the device off by 5 orders 
of magnitude. What we want is to turn it off 
by less voltage. But as long as we operate 
on the basis of electrostatic principles, 
we’re stuck with 60meV per decade.
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• Next question: why doesn’t electron 
density obey the same rule as it 
increases? i.e. why does it roll off?

• Part of it is because the Fermi 
function doesn’t increase as fast as 
exponential for the whole region. But 
there is a more important point:
• We’ve assumed that U = - qVG, 
however as the channel gets more 
conductive, this will not be the case. 

• As the channel becomes more 
conductive it becomes more like a 
metal, hence shorted to the contacts. 
Therefore potential gradually 
decreases to 0.

• Now the question is at what point 
does it start to behave like a metal 
and what determines it. We’ll see the 
results first and then try to understand 
them. See next page.
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• Low DOS results in low 
quantum capacitance. For a 
small capacitance, since 
caps behave as inverse 
resistors (conductors), 
conductance is low (open) 
and the entire voltage 
appears across CQ. 

• For high DOS, the 
capacitor is large, 
hence more metallic; 
acts as a short, node 
C becomes 0. And 
there will be low 
voltage drop across 
CQ.

LOW DOS HIGH DOS

• This is now becoming an important issue in the small devices. In the past Cins 
was small relative to CQ; hence effect of CQ wasn’t significant. Consider the 
equation for Cins:  Cins = εins/tins. Over the years, tins has become smaller. Through 
making tins smaller (Hence increasing Cins) people were able to control the 
channel. How ever at some point Cins will become big relative to CQ. CQ will then 
have more influence and the channel can’t really be controlled by Cins. It is the 
Quantum Capacitance that controls now.

INSULATOR METAL
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• DIMENSIONS

• DOS in a 2D system is constant.

• For the corresponding Quantum 
Capacitance we have:

Once the thickness gets 
comparable to 10 Ǻ, one has to 

worry about the Quantum 
Capacitance. (Quantum 

Capacitance is like a parallel plate 
capacitor whose plates are 
separated by the quantity d)

• But how do we get the expression for 
the Quantum Capacitance?
• This is done on the next page.
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• For the potential, we had:

• The amount of change in ΔN depends on 
U. This dependence is non-linear but any 
nonlinear curve can be approximated by a 
line over a small region. Therefore we 
have: 

• This is what we would get if we’d solve 
for the potential at node C.
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Roll-Over in the ON region

• One reason is the Fermi function that 
doesn’t change as fast as an exponential.
• The more important reason is that once the 
channel gets conductive, it is very hard to 
change the potential in the channel. The 
amount of change is decided by the ratio of 
insulator versus quantum capacitance.

Quantum Capacitance

• The Quantum capacitance is a very 
important concept especially for small devices 
where it is a small value; hence the voltage 
drop over it is big and influential; whereas in 
big devices Quantum Capacitance is very big 
which results in a short and one doesn’t have 
to worry about it as much.

CQ
C

DS

VG

CHANNEL

Cins

VG DqCQ
2=UL    

U

VG

sn10log

60meV 

n(s) changes  by 
one decade

OFF   ON
Roll-Over

ns vs. Gate Voltage; 
Quantum Capacitance

51:10


	Lecture 25: Quantum versus Electrostatic Capacitance
	Schrödinger / Poisson
	Self Consistent Solution
	Poisson / Boltzmann
	Quantum vs. Semi-Classical
	Electron Density as Function of Gate Voltage
	Electron Density vs. Gate Voltage (slope)
	ns vs. VG Slope (Cont’d)
	Insulator to Conductor
	Insulator to Conductor (cont’d)
	Quantum Capacitance
	Quantum Capacitance (cont’d)
	ns vs. Gate Voltage; Quantum Capacitance

