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• The question is how to calculate the number of electrons 
inside the device and the current that flows through it. 
(This is a non-equilibrium problem i.e. two different Fermi 
levels.) 
• At the beginning of the course the current and the 
electron density was obtained for a small one level device.

• In general, instead of a single level    , the device is described by a Hamiltonian 
matrix whose eigenvalues give the energy levels
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Recap on the one level Device

• Equating the two
currents (in steady
state) will give us
the number of electrons N.
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• Substituting N back into either equation of 
I1 or I2 will give the current through the 
device. 

• After coupling, the discrete state (delta 
function) will be broadened according to the 
Lorentzian function.

One Level Device
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• Lorentzian function is defined as:

• And it can be incorporated in the 
current equations by setting up an 
integral over the energy.

• Equations of I1 and I2 now become:

• We now have a distribution of levels 
instead of just one level and to get the 
total current (if the levels are 
independent) we can just sum all 
currents; hence integrating over 
energy.

Lorentzian Distribution
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• N Becomes:

• Finally we have:

• This equation tells us that the 
current flows due to the difference of 
agenda between f1 and f2.

• What we’ve done thus far is a 
review of first couple of weeks. In 
general our quantities like      or      
become matrices.
(            ,             ,etc)

• The next step is to derive the matrix 
equations of the number of electrons 
and current.
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• As we have discussed before, a 
useful concept is that of Green’s 
Function:

• Having Green’s function, one can 
calculate the density of states; 
namely the spectral function A which 
is defined as:

We now define the quantity   , which 
is physically the imaginary part of     :

• The matrix equation for N is:

Matrix Equations
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• Where                       ,

• We can describe Transmission as:

Note that

And

• Current at the source or the drain 
contact:

• Net Current through the device:
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Recap and Overview
• All various quantities that were 
discussed at the beginning of the 
course have corresponding matrix 
versions.

• The diagonal elements of the matrix 
in its real space representation give 
the value of the quantity at various 
points.

• For example consider the spectral 
function A. Its diagonal elements 
represent the local density of states at 
different points. 

Summary of Results
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Local DOS in the 
device near the 
source contact

Local DOS in the 
device near the 
drain contact
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• When the DOS (A) is connected to the 
reservoirs, it can be broken into 2 parts, 
A1 and A2. (A=A1+A2)
• Just like the case of one level model 
that a fraction gets filled according to f1 
and a fraction according to f2, here A1 
gets filled according to f1 and A2 gets 
filled according to f2.        (electron 
density) tells us what’s filled and can be 
calculated by summing A1f1 with A2f2.
• The important point is that these 
equations can be used to solve any 
type of complex problem to get the 
current passing through the device.
• Notice that the limiting case of the 
equations (where matrices become 1*1) 
will result in what we had for the one 
level model.

Summary of Results
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• H becomes a matrix with one entry. (Just 
one level    )

• has a real part which is written as     and 
an imaginary part written as     .     

• Considering G physically, the presence of 
shifts the level up or down and     has to do 
with the level broadening or the escape rate 
out of the device. (Lifetime of the particle)
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From matrix equations to 
one level model
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• But what are A1 & A2 and
do they add up to A?

• Transmission

From matrix equations to 
one level model
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• As it can be seen from these derivations, matrix equations do in fact reduce to the 
equations that we had for the one level model in their limiting case in which they 
become one by one matrices.
• One can think of deriving general matrix equations from the 1X1 case by thinking 
that both [H] and [∑] are diagonal matrices and individual diagonal entries are  
contributing to the current INDEPENDENTLY. It then makes sense to sum up all 
these contributions in order to get the net current. But this is something we cannot
do in general, because [H] and [∑] cannot be diagonalized simultaneously.
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[H] & [∑] 
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• Physically there are three levels (in the device) that are connected to one another 
which result in the off diagonal terms in the Hamiltonian matrix. On the other hand 
the leads into which electrons can empty are connected to point 1 on the left and to 
point 3 on the right. This is shown by the escape rates in the ∑1 and ∑2 matrices.

• In the present representation ∑1 and ∑2 are diagonal while [H] is not. One can 
derive the representation in which [H] is diagonalized but then ∑1 and ∑2 wouldn’t 
be diagonal any more.
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[H] & [∑]: Simultaneous 
Diagonalization
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• When [H] is diagonalized, the incoming electron will not just go in one level, but it 
will go in all three levels in fractions. It is similar when the electron exits the device. 
It will exit from all three levels. This is reflected by the fact that ∑1 and ∑2 are not 
diagonal and have off diagonal entries.

• Notice that all of this is taken care of, with using the matrix equations.
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[H] & [∑] Different 
Representations
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