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One Level Device
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General Multi-level Devices
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Transmission

Focus of this Lecture

T(E) = Trace(T GT,G*)

T, =i(T, -

Z))
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Two Counter Propagating Fluxes

__ 4 T
I = —ZjdET(E)(fl - f5)
?(E)fl Flux from left to right

?(E)fz Flux from right to left

» The way to think of T(E)*f is that T tells us how much electron will flow when there
are electrons available in the reservoirs. What tells us the availability of electrons is

f.
* Transmission: How easily an electron transmits from left to right or vice

versa.
 Current is really a measure of how easily electrons can get from left to right or
vice versa. Easy transmission should result in low resistance and lots of current.
Therefore it makes sense for the current to be proportional to transmission.




Incident wave from left
ikx U,o(x)

Engineering versus Physics
Physics: e ™ e '
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t: Transmission amplitude
T: Transmission Probability
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In this course, we use physics convention.

» Schrodinger Equation

[Ec e +U(X)}W(X) - Ey(
m dx

( U(x)=0 for x #0)
With this potential, the wire is uniform and
solutions to the Schrodinger equation can be
written in the form of plane waves.( ¢** )

» Note that since both ¢® and o~ satisfy Schrédinger equation which is
linear, any linear combination of them also satisfies the equation.

» Dispersion Relation: £ =FE, —|—h2k2/2m

* Now that we have the solution on the left and right, the challenge is to find the
solution at x=0. Note that the Schrodinger equation must be satisfied everywhere.




* Here is the key point for solution at x=0:

y is always continuous.

» The requirement is that Schrodinger
equation must be satisfied every where.
What happens if the wave function is not

continuous? See the right side:

[Ec— L £ +U(X)}/f(x)=Ew(x)
m dx

* When y is discontinuous, its first derivative
is a delta function and its second derivative is
a doublet function.

* |f the second derivative is a doublet function
and the rest of quantities in the Schrodinger
Equation are normal functions, then there is
no way for the Schrodinger Equation to be
satisfied at that point
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» Since the wave function is continuous
across the point x=0, we have: 1+r =t

» But what happens to the derivative of y? dy [dx
And does it have to be continuous at x=07? x=0": ik(1-r) x=0":

 Notice that a discontinuous dy/dx will result in a
delta function for the second derivative which is |/ strength of the
infinite at x=0. Now if U(x) was a normal function, | ‘moporionaiio
Schrédinger equation would not be satisfied; | ooty
hence we would conclude that dy/dx has to be

continuous at x=0. And therefore we would set
ik(1-r) equal to ikt. However,

» U(x) is not a normal function in our example. It
is a delta function. So in the case of
discontinuous dy/dx, Schrodinger Equation would
have two delta functions in it, which would cancel
each other and thus the equation would be
satisfied.

» Height of the discontinuity
must be such that it results
in a delta function with a
strength exactly equal to the
scatterer so that they would
cancel each other out.




* A point on dimensions
ho—eV

» Schrodinger equation for our
problem:

hv—elV-m
U, has the dimension of eV-m.

U(x)=U,6(x)
j dx5(x)=1=8(x) > m™"
U,—> eV -m

—h—z[ikt—ik(l—r) (x)+U,8(x)w(x)=0
2m-

h.
~ SO, —%lk(t—1+r)+U0t=0

« We also have 1 +r=1t.
« Having 2 equations and 2 unknowns,

we can solve forr & t.
2

B k=147 =U,t i ( hkj

i"i ‘o1 B U, +ifv’ V:; » Thus far we've assumed that x was
continuous; however in practice x is
discrete. Differential Equations have
discrete representations and
differential operators become matrix
operator.

» We'll solve the same problem for a

discrete lattice.

» For an electron with a large velocity,

UO is negligible and t = 1. Low velocity

will result in a small transmission.
h 2 v 2

+ hy?




- Discrete Lattice Uq/@
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» The differential equation now
becomes a matrix equation. Also,
Continuous Discrete

W(x) > W, W, v,,elc.

 Schrodinger equation at point x=0:
U

(Ec +2t, + 7‘)}//0 —tyw_ —tyw, =Ey,

2 [Continuous Discrete}

_ ika
ika } —lW,=—1e ¥,

[Ec +21, +% _toeikajw ol =Ey,
a

* Eliminating -1 is harder because of
the presence of both the incident and
the reflected wave.

Atx =0

[y =

= 1
2ma ’

o(x) —» —
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WO =1+I" +ika —ika +ika
e Ya=We Te  —e

 The idea is that out in the lead, we "
W, =e “+re

know how y, and y, look like and by
relating them to y,, we eliminate them
to find an expression for y,,.

 Substituting for w-1, we have:




* Finally, putting ! and y*! in terms of y?
will give us:

U : :
—(Ec +2t, +—2—t " —1.e" }
¢ /

——
U, +ihv

a

U ] ] —ika ika
(Ec +2t, +7°—toe’k" —toe’k"jl/fo ~t,(e™ —e" )= Ey,

ihv
U, +ihv

» Grouping the similar terms, we have:

{E — (EC +2t, + Yo t,e" —t,e"™ ﬂ% =1, (e”“’ — e‘”“’)
a

f (e”“‘ —e )= 2it, sin ka

e Finally, ¥ o = 1 =
Same as before

* The important thing to note is that
the matrix equations mentioned
earlier generalize the procedure
that was done here. Therefore, one
does not have to go through this
again and again.

» See next page to find out about
the correspondence and
similarities.

 But sin(ka) is really the velocity in a
discrete lattice because:
E=F_ +2t,(1-coska)

* And
hv = 9L _ 2at, sin ka

* We then have: 21’10 sin ka = ihv




» We've just derived the equations for a 1D wire. What we want is to derive the
general equations for any device with a specified Hamiltonian which is in contact

with some two contacts having any general > , and ..

» Once we have the general equations, it is then easy to directly get answers. For
instance if we want transmission, what we’ll do is:

24, sin ka = v T (E) = Trace (I,GT,G*) v =2t,sin ka




- So if we'd just made a use of Green’s Function Method
T(E)=Trace(I' GT ,G")and
applied it blindly to this problem we

would have gotten the right answer,
namely:
h2v2

T —

« Advantage: Having a new problem,
one can derive the answers quickly
without having to go through the
detailed physics.

2
U, + h*?

* Disadvantage: One can calculate
every thing without really
understanding anything.

» The power of using Green'’s
function is that once one has derived
the equations and is familiar with
them, the they can be used to solve
any problem in a fairly straight
forward manner.

* Next day, we’'ll derive:

1= [ (or6 Y+ lor )
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