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Transmission (physical 
meaning)
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Two Counter Propagating Fluxes

• The way to think of T(E)*f is that T tells us how much electron will flow when there 
are electrons available in the reservoirs. What tells us the availability of electrons is 
f.
• Transmission: How easily an electron transmits from left to right or vice 
versa.
• Current is really a measure of how easily electrons can get from left to right or 
vice versa. Easy transmission should result in low resistance and lots of current. 
Therefore it makes sense for the current to be proportional to transmission. 

T(E)f1 Flux from left to right

T(E)f2 Flux from right to left
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(              for          )
With this potential, the wire is uniform and 

solutions to the Schrödinger equation can be 
written in the form of plane waves.(          )

Engineering versus Physics
Physics:

Engineering:

In this course, we use physics convention.

Wire with a Delta Function 
Scatterer
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• Schrödinger Equation

)()()(
2 2

22

xExXU
dx
d

m
Ec ψψ =⎥

⎦

⎤
⎢
⎣

⎡
+−

h

0)( =xU 0≠x

ikxe ±

• Note that since both          and            satisfy Schrödinger equation which is 
linear, any linear combination of them also satisfies the equation.
• Dispersion Relation:                                           
• Now that we have the solution on the left and right, the challenge is to find the 
solution at x=0. Note that the Schrödinger equation must be satisfied everywhere.
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t: Transmission amplitude
T: Transmission Probability

2tT =

Incident wave from left



• Here is the key point for solution at x=0:

ψ is always continuous.

• The requirement is that Schrödinger 
equation must be satisfied every where. 
What happens if the wave function is not 

continuous? See the right side:

Continuity of the wave 
function
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• When ψ is discontinuous, its first derivative 
is a delta function and its second derivative is 
a doublet function.
• If the second derivative is a doublet function 
and the rest of quantities in the Schrödinger 
Equation are normal functions, then there is 
no way for the Schrödinger Equation to be 
satisfied at that point
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• Since the wave function is continuous
across the point x=0, we have: 1+ r = t
• But what happens to the derivative of ψ?
And does it have to be continuous at x=0?
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Discontinuity of dψ/dx
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• Notice that a discontinuous dψ/dx will result in a 
delta function for the second derivative which is 
infinite at x=0. Now if U(x) was a normal function, 
Schrödinger equation would not be satisfied; 
hence we would conclude that dψ/dx has to be 
continuous at x=0. And therefore we would set 
ik(1-r) equal to ikt. However,
• U(x) is not a normal function in our example. It 
is a delta function. So in the case of 
discontinuous dψ/dx, Schrödinger Equation would 
have two delta functions in it, which  would cancel 
each other and thus the equation would be 
satisfied.

(x)

22 dxd ψ

Discontinuous dψ/dx

(x)

• Height of the discontinuity 
must be such that it results 
in a delta function with a 
strength exactly equal to the 
scatterer so that they would 
cancel each other out.

Strength of the
delta function is
proportional to

the height of the
discontinuity.



Discontinuity of dψ/dx
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• Schrödinger equation for our 
problem:

• So,
• We also have  1 + r = t.
• Having 2 equations and 2 unknowns, 
we can solve for r & t.

r = t - 1

• For an electron with a large velocity, 
U0 is negligible and  t = 1. Low velocity 
will result in a small transmission.
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• A point on dimensions

• U0 has the dimension of eV-m.
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• Thus far we’ve assumed that x was 
continuous; however in practice x is 
discrete. Differential Equations have 
discrete representations and 
differential operators become matrix 
operator.
• We’ll solve the same problem for a 
discrete lattice.
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• Discrete Lattice

• The differential equation now 
becomes a matrix equation. Also,

Continuous Discrete

• Schrödinger equation at point x=0: 

• The idea is that out in the lead, we 
know how ψ-1 and ψ+1 look like and by 
relating them to ψ0, we eliminate them 
to find an expression for ψ0.

Discontinuous Case 
Discrete Lattice
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At x = 0+

• Eliminating ψ-1 is harder because of 
the presence of both the incident and 
the reflected wave.
At x = 0-

• Substituting for ψ-1, we have:

010100
0

02 ψψψψ Ett
a

UtEc =−−⎟
⎠
⎞

⎜
⎝
⎛ ++ −

ikate

t

=

=

+ 1

0

ψ

ψ
0010 ψψ ikaett −=− +

01000
0

02 ψψψ Etet
a

UtE ika
c =−⎟

⎠
⎞

⎜
⎝
⎛ −++ −

ikaika ree

r
+−

− +=

+=

1

0 1

ψ

ψ ikaikaika eee +−+
− −+= 01 ψψ

a

-2      -1      0       1      2 

aU /0

Continuous Discrete
x )(δ

a
1

→



• Finally, putting ψ-1 and ψ+1 in terms of ψ0

will give us:

• Grouping the similar terms, we have:

• But sin(ka) is really the velocity in a 
discrete lattice because:

• And

• We then have:

Discontinuous Case 
Discrete Lattice
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• Finally, 
Same as before

• The important thing to note is that 
the matrix equations mentioned 
earlier generalize the procedure 
that was done here. Therefore, one 
does not have to go through this 
again and again.
• See next page to find out about 
the correspondence and 
similarities. 
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• We’ve just derived the equations for a 1D wire. What we want is to derive the 
general equations for any device with a specified Hamiltonian which is in contact 
with some two contacts having any general ∑1 and ∑2.

• Once we have the general equations, it is then easy to directly get answers. For 
instance if we want transmission, what we’ll do is:
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Use of General Matrix 
Equations
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• So if we’d just made a use of 
Trace (Γ 1G Γ 2G +) and 

applied it blindly to this problem we 
would have gotten the right answer, 
namely:                                              

• The power of using Green’s 
function is that once one has derived 
the equations and is familiar with 
them, the they can be used to solve 
any problem in a fairly straight 
forward manner. 

Green’s Function Method
51:28
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Green’s Function Method 

• Advantage: Having a new problem, 
one can derive the answers quickly 
without having to go through the 
detailed physics.

• Disadvantage: One can calculate 
every thing without really 
understanding anything.

• Next day, we’ll derive:
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