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• Reminder: We’re discussing the current 
flow through the channel connected to 
the source and drain contacts with two 
different chemical potentials. 

• Towards the beginning of the course 
we discussed this problem for a single 
level device and we derived the 
equations with common sense 
argument without much use of quantum 
mechanics.

• Huge size; 
however the effect 
on the channel can 
be written using ∑1
which has the same 
size as that of the 
channel.

• Huge size; 
however the effect 
on the channel can 
be written using ∑2
which has the 
same size as that 
of the channel.[H]
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• Next, we want to derive Gn. 
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• Schrödinger Equation

• General Form

• Partitioned

• Contact before being connected to 
channel:

• What happens after connection?
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• Schrödinger Equation becomes:

• So we have:    

• Since Φ1 is an eigenstate of the 
reservoir,

• Grouping the similar terms,
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• The solution is:

• Substituting back into the first 
equation,

• We are used to dealing with the 
Schrödinger equation like

But here we have a driven system 
that we solve for:
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• In case of two contacts, we would 
have:

For now, we keep things simple and 
continue with one contact; solving 
for ψ, we have:

Where,

• Next step is to find the electron 
density inside the channel.
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• There are millions of eigenstates 
inside the reservoir which we can 
denote by α and each of them has its 
own eigenvalue. i.e.

and each solution will give rise to a 
certain ψ.
A Very Important Physical Concept

• We know that the net electron density 
is ψ*ψ. Now the question is:

or

• Note that this is only true as long as α
represents an eigenstate of the contact.
• The reason relies on coherence 
discussed on the next page.
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• There are lots of eigenstates in the 
contact, however there is NO 
coherence between them and in that 
sense they all act independently.  
• For instance, consider Young’s 
double-slit experiment: 
• For thermal sources 
without coherence we 
should add intensities  
whereas for coherent 
sources like laser we
might have had situations for which  
we’d want to add the electric fields.
• Electrons are more like thermal 
sources and they act incoherently.
• We should find ψ due to each 
excitation in the contact and then add 
the intensities (ψψ*).
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• Electron Density

• The significant ones from the point 
of view of electron density are the 
diagonal ones. 
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• Based on                                    ,
we have:

• Summing over all states that are occupied,

• We have:
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definition of delta 
function:
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• We wanted to derive the electron
density inside the channel:

• Note:
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General Philosophy
• Start from something that describes the device and contact together.
• Contact is full of eigenstates which are trying to fill up the device; find the 
resulting wave function. 
• Each eigenstate acts on the device independently. 
• Do the states crossing from right to left and from left to right block one another 
because of Exclusion Principle?
• No. As long as you start from two states that are orthogonal, even if they overlap, 
they can’t block each other.

Source          Channel           Drain

General Philosophy;
Pauli Blocking?
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