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• What we’ve discussed thus far in 
this class was current flow through 
a small device using the 
Hamiltonian and the self energy 
matrices. For large devices we 
also had to take into account the 
scattering processes.
• Today we want to see how one 
eventually gets Ohm’s law as the 
device gets bigger and bigger. 
• One of our early results was that:

• Naturally then you would think that 
conductance will depend on this product.
• When you think of a conductor that has 
length L and area S, Ohm’s law predicts 
that conductance is proportional to S/L. 
• For our expression of current, we know 
that DOS will increase as the volume is 
increased. This is the same as saying D is 
proportional to S*L=V. 
• On the other hand, you may think since 
the Gamma represents the escape rate at 
the two contacts, it shouldn’t depend on 
size. How ever for longer devices, 
electron wave function is more spread 
over the channel; hence escaping into 
contacts becomes less easy. So Gamma 
should be proportional to 1/L; hence 
current would become proportional to S.DI
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• What                         predicts is not what 
Ohm’s law states. This is due to the fact 
that we’ve considered the device to be 
ballistic i.e. there is no scattering inside the 
device. 
• How ever, our expectation is that if we 
make the device long enough, and include 
all factors, then Ohm's law should follow.
• To investigate this, we consider two 
conductors; one with 1 scatterer and the 
other with 2 . Then we ask the question 
that how the two conductors compare.

• For current we have: 
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• Thinking of electrons as particles, 
for transmission through 2 scatterers 
we have:

• This is the Geometric series:

• Now the question is how 
transmission is related to the length of 
a long conductor.

• Our function must satisfy the above 
relationship. If you separate your 
conductor into two sections of equal 
length we should have:

• This equation will satisfy the 
relationship
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• λ is called the mean free path and 
its definition is:
A conductor that has a length of 

λ, has a transmission of ½.
• But does the relation we have for 
Transmission lead to Ohm’s law?
• For conductance we have:

• This looks like Ohm’s law except 
for the term λ in the denominator. 
Ohm’s law predicts infinite 
conductance when L=0 but this tells 
us that there is maximum 
conductance due to the contact 
resistance. Of course when L gets 
large (>100 λ), this looks more like 
Ohm’s law.

• For resistance we have:

• Again as L tends to 0 , resistance 
does not become 0 but it will approach 
a constant value due to contact 
resistance. For large L we get Ohm’s 
law. 
• For a 2D conductor, we use the 
concept of sub-bands where increasing 
the number of modes will increase the 
conductance and reduce the resistance.

• The number of modes will roughly 
increase as the area. So we actually are 
getting the Ohm’s law.
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• This picture is not as easy if we 
think of electrons as waves and 
our relationship will not 
compensate for all the physics that 
is inherent in the problem.

• Consider the case were we have 
two scatterers; from particle point 
of view and using the relationship 
that we’ve derived for 
transmission, transmission should 
reduce by a factor of 2 when we go 
from one to two scatterers. How 
ever this is not the case.

• Looking at the problem Quantum 
mechanically, it is interference between 
the waves that changes the picture. For 
example if the distance between the two 
scatterers is quarter of a wavelength, the 
two reflections cancel each other and 
this way we can even get  more 
transmission 
(Constructive interference) for some 
certain energies relative to one scatterer.

• So what do we get if we calculate the 
transmission Quantum Mechanically?
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• Let’s say we’d calculate the transmission 
through a conductor with 50 modes. If the 
conductor was ballistic, transmission would 
be the same as number of modes
(here it is 50). 

• Whereas for a classical approach for a 
device that has scattering we get a 
constant transmission value as a function 
of energy, Quantum mechanical approach 
gives us fluctuations with height of order 1.

• The conduction then would 
fluctuate by order of             .  
This is what people have 
observed experimentally. 
• Measuring the conductance as 
a function of gate voltage for an 
FET, they got:

• Note that the quantum 
mechanical  calculation gives a 
little lower average than the 
classical transmission because of 
what’s called weak localization.
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• Now what happens if the transmission per mode 
was, say, 1/100 having 50 modes? We’d have a 
transmission of 0.5 as the product of MT. Then a 
fluctuation of order one would result in a negative 
transmission which is conceptually impossible. So 
what happens?

• People believe that Quantum mechanical  transmission would be 0 except that at 
some certain energies it would have sharp peaks. This is what’s called regime of
strong localization. 
• This theory predicts that if you make any wire long enough you should get to this 
regime but this is not what happens in real world. This is due to treating the 
problem quantum mechanically without any phase breaking. And this is something 
that does NOT happen in the real world. Here is how to explain it:

• In a wire there are regions with length of order LS
(Scattering length), which function like a quantum 
mechanical entity. But these regions do not have 
phase coherence with each other; hence cannot 
have destructive interference. 

E

T

LS

Regime Of Strong 
Localization

43:50



Power Dissipation
• When we think of resistance we 
mentally associate a certain amount of 
energy loss to it which we can 
describe as I2R.
• For a small ballistic device we have a 
minimum resistance of h/2q2. 
• One might think that this is 
associated with the channel; however 
there are no scatterers and there are 
no electron phonon interactions. For 
resistance to occur electron must 
loose its energy to something. So what 
happens to I2R?

Consider the current flow as a function 
of energy:

• If the energy currents on the left and 
the right contacts were the same, that 
would mean no energy was left 
behind. How ever with scattering 
process, the current at right contact 
flows at a lower energy. So the energy 
currents are not equal. For our model 
without scattering, the two energy 
currents are equal.
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Observations From Experiment and Interpreting the Results

• In some experiments, the amount of current flow in carbon nanotubes results in 
big enough energy dissipation that should burn the device if the dissipation was 
happening in the channel. But this does not happen i.e. the device does not burn 
for high currents.

• It is believed that the heat is dissipated in the contacts. However, how much heat 
is dissipated in each contact remains to be established.

Experiments on CNT’s
51:55
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