Lecture 9: Scattering and Transmission

Mark Lundstrom

Electrical and Computer Engineering
Network for Computational Nanotechnology
and
Birck Nanotechnology Center
Purdue University
West Lafayette, Indiana USA

Lundstrom 7.2012
ballistic MOSFET (MB)

\[I_D = W Q_n \left(V_{GS}, V_{DS} \right) \nu_T \]

\[I_D = W Q_n \left(V_{GS}, V_{DS} \right) F_{SAT} \left(V_D \right) \nu_T \]

\[I_D = W Q_n \left(V_{GS}, V_{DS} \right) \frac{\nu_T}{2 k_B T_L / q} V_{DS} \]
ballistic vs. real MOSFETs

$L_G = 40 \text{ nm}$

- Si MOSFETs deliver > one-half of the ballistic on-current. (Similar for the past 15 years.)
- MOSFETs operate closer to the ballistic limit under high V_{DS}.
- But III-V FETs operate close to the ballistic limit.

review: ballistic transport in a MOSFET

$L << \lambda$

\[KE = \frac{1}{2} m^* \nu^2 \]
review: diffusive transport in a MOSFET

$L \gg \lambda$

E

$E_C(0)$

$E_C(x)$

$Lundstrom\ 7.2012$
non-local, quasi-ballistic transport

Nanoscale MOSFETs are neither fully ballistic nor fully diffusive; they operate in a “quasi-ballistic” regime.

How do we understand how carrier scattering affects the performance of a nanoscale MOSFET?
transmission

\[f_1(E) = \frac{1}{1 + \exp\left(\frac{E - E_{F1}}{k_B T_L}\right)} \]

\[f_2(E) = \frac{1}{1 + \exp\left(\frac{E - E_{F2}}{k_B T_L}\right)} \]

\[I = \frac{2q}{h} \int T(E) M(E) (f_1 - f_2) dE \]

ballistic transport: \(T(E) = 1 \)
current transmission in a MOSFET

elastic scattering....

\[R_{11}(E) I(E) = [1 - T_{12}(E)] I(E) \]

\[I(E) \]

\[T_{12}(E) I(E) \]

\[E \]

\[E_C(0) \]

\[E_C(x) \]

\[X \]
current transmission in a MOSFET

elastic scattering….

\[T_{21}(E) I(E) \]

\[R_{22}(E) I(E) = \left[1 - T_{21}(E) \right] I(E) \]

\[E \]

\[E_C(0) \]

\[E_c(x) \]

\[X \]
transmission in the presence of elastic scattering

\[T_{12}(E) = T_{21}(E) = T(E) \]
inelastic scattering

\[T_{12}(E) \neq T_{21}(E) \]

MFP and transmission

\[\Lambda(E) = \nu(E) \tau(E) \]

\[T(\Lambda(E)) \]
characteristic times

1) single particle lifetime, τ:

$\tau(\vec{p})$

2) momentum relaxation time, τ_m:

$\tau_m(\vec{p})$

3) energy relaxation time, τ_E:

$\tau_E(\vec{p})$

$Lundstrom 7.2012$
transition rate and characteristic times

Transition rate from p to p' (probability per second)

$$S(\vec{p}, \vec{p}')$$

$$\frac{1}{\tau(\vec{p})} = \sum_{\vec{p}', \uparrow} S(\vec{p}, \vec{p}')$$

$$\frac{1}{\tau_m(\vec{p})} = \sum_{\vec{p}', \uparrow} S(\vec{p}, \vec{p}') \frac{\Delta p_z}{p_z}$$

$$\frac{1}{\tau_E(\vec{p})} = \sum_{\vec{p}', \uparrow} S(\vec{p}, \vec{p}') \frac{\Delta E}{E_0}$$

Lundstrom 7.2012
Fermi’s Golden Rule

\[S(\vec{p}, \vec{p}') = \frac{2\pi}{\hbar} |H_{p'p}|^2 \delta(E' - E - \Delta E) \]

\[H_{p',\vec{p}} = \int_{-\infty}^{+\infty} \psi_f^* U_S(\vec{r}) \psi_i d\vec{r} \]

\[E' = E + \Delta E \quad \Delta E = 0 \text{ for a static } U_S \]

\[\Delta E = \pm \hbar \omega \text{ for an oscillating } U_S \]
The number of ways that an incident electron at energy, \(E \), can scatter is expected to be proportional to the density of final states that conserve energy and momentum.

1) elastic scattering

\[
\frac{1}{\tau(E)} \propto D_f(E)
\]

2) phonon absorption

\[
\frac{1}{\tau(E)} \propto D_f(E + \hbar \omega)
\]

3) phonon emission

\[
\frac{1}{\tau(E)} \propto D_f(E - \hbar \omega)
\]
MFP and transmission

\[\Lambda(E) = \nu(E)\tau(E) \]

\[T(\Lambda(E)) \]
transmission across a field-free slab

Consider a flux of carriers injected from the left into a field-free slab of length, L. The flux that emerges at $x = L$ is T times the incident flux, where $0 < T < 1$. The flux that emerges from $x = 0$ is R times the incident flux, where $T + R = 1$, assuming no carrier recombination-generation.

How is T related to the mean-free-path for backscattering within the slab?
In general, there could be injection from both the left and the right contacts.

For elastic scattering: \(T_{12}(E) = T_{21}(E) = T(E) \)

Near equilibrium: \(T_{12}(E) \approx T_{21}(E) \approx T(E) \) (no built-in fields)
1) Inject from left only.

2) Ignore “vertical transport” (elastic scattering or near-equilibrium), so \(T_{12}(E) = T_{21}(E) = T(E) \).

Then relate \(T \) to the mean-free-path for backscattering within the slab. (No assumption about whether the slab length, \(L \), is long or short compared to the mfp, but we do assume that the mean-free-path is not position-dependent.)
transmission

\[I^+ (x = 0) \]

\[R I^+ (x = 0) \]

\[\text{mfp} = \lambda \quad \mathcal{E} = 0 \]

\[I^+ (x) \quad \Gamma^+ (x) \]

\[I^- (x) \quad \Gamma^- (x) \]

\[I^+ (x = L) = T I^+ (x = 0) \]

absorbing boundary

\[\frac{d I^+ (x)}{dx} = - \frac{I^+ (x)}{\lambda} + \frac{\Gamma (x)}{\lambda} \]

\[I = I^+ (x) - \Gamma (x) \quad \text{(constant)} \]

\[\Gamma (x) = I^+ (x) - I \]

\[\frac{d I^+ (x)}{dx} = - \frac{I}{\lambda} \]
transmission (ii)

\[I^+(x = 0) \quad \text{mfp} = \lambda \quad \mathcal{E} = 0 \quad T I^+(0) \]

\[RI^+(0) \]

\[I^+(x) \quad I^-(x) \]

absorbing boundary

\[0 \quad L \quad x \]

\[d I^+(x) \quad \frac{d I^+(x)}{dx} = - \frac{I}{\lambda} \]

\[\int_{r^+(0)}^{r^+(x)} dI^+ = - \frac{I}{\lambda} \int_0^x dx' \]

\[I^+(x) = I^+(0) - I \frac{x}{\lambda} \]
transmission (iii)

\[I_1 = I^+ (x = 0) \]

\[R I_1 \]

\[mfp = \lambda \quad E = 0 \]

absorbing boundary

\[I^+ (x) \]

\[I^- (x) \]

\[I^+ (0) \]

\[I^- (0) \]

\[I^+ (L) \]

\[I^- (L) \]

\[I^+ (x) = I^+ (0) - \left(I^+ (x) - I^- (x) \right) \frac{x}{\lambda} \]

\[I^+ (L) = I^+ (0) - \left(I^+ (L) - I^- (L) \right) \frac{L}{\lambda} \]

\[I^- (L) = 0 \]

\[I^+ (L) = I^+ (0) - I^+ (L) \frac{L}{\lambda} \]
transmission (iv)

\[I^+(x = 0) \]

\[mfp = \lambda \quad \mathcal{E} = 0 \]

\[I^+(x) \quad I^-(x) \]

\[I^+(L) = I^+(0) - I^+(L) \frac{L}{\lambda} \]

\[I^+(L) = \frac{I^+(0)}{1 + L/\lambda} \]

\[\frac{I^+(L)}{I^+(0)} = T = \frac{\lambda}{\lambda + L} \]

\[I^+(x = L) = T I^+(0) \]

absorbing boundary

\[T(E) = \frac{\lambda(E)}{\lambda(E) + L} \quad T(E) + R(E) = 1 \]

\[T \to 0 \quad L >> \lambda \]

\[T \to 1 \quad L << \lambda \]
MFP and transmission

\[\Lambda(E) = \nu(E) \tau(E) \]

\[T(\Lambda(E)) \]

\[\Lambda(E) \text{ vs. } \lambda(E)? \]
If we assume that the scattering is \textit{isotropic} (equal probability of scattering forward or back) then average time between backscattering events is \(2 \lambda \).

\[
\lambda(E) = 2 \nu(E) \tau_m(E) = 2 \Lambda(E)
\]
If we assume that the scattering is *isotropic*:

\[
\lambda(E) = \frac{\pi}{2} \nu(E) \tau_m(E)
\]
transmission across a slab with an electric field

\[T(E) = \frac{\lambda(E)}{\lambda(E) + L} \]

This turns out to be a difficult problem.

How can we understand the essential physics?
transport “downhill”

\[\ell \ll L \]

\[T \approx 1: \]

High field regions are good carrier collectors.

physics of elastic back-scattering

\[E_C(x) \]

\[q\Delta V(x_1) \]

\[\frac{1}{2} m v_x^2 > q\Delta V(x_1) \]

Lundstrom 7.2012
field-free region followed by high-field region

Transmission is controlled by the low-field region.
wrap-up

1) Transmission is related to the MFP for backscattering

\[T = \frac{\lambda}{L + \lambda} \]

2) Ballistic transport: \(L \ll \lambda \quad T \rightarrow 1 \)

3) Diffusive transport: \(L \gg \lambda \quad T \rightarrow \frac{\lambda}{L} \ll 1 \)

4) High-field regions are good collectors (\(T \sim 1 \))
For a more in-depth treatment of carrier scattering, see:
