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This lecture is about 

What is NEMO? 
 
What can NEMO do? 
 
Why NEMO and not something else? 
 
Where can you find NEMO? 
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A change in the view of the world 

20th century point of view: 

Fundamental physics 

Device engineering 

Today: 
Devices enter the realm of countable atoms 
Distinction of individual bands (e.g. CB, VB) becomes artificial 



Today’s simulation requirements: industry 

http://newsroom.intel.com/docs/DOC-2035 

Example: Intel’s 22 nm Tri-Gate Transistor 

Real world effects: 
Strained structures 
Imperfect growth 
 Impurities 
 Alloy disorder 
 Surface and interface 
 roughness 
3D geometry affects electrons 
Scattering on lattice vibrations 
Gate leakage 
Contact resistance 
Joule heating 
… 



Nature Nanotechnology 7, 242 (2012) 

Single atom transistor 

Countable device atoms suggest atomistic descriptions 
Modern device concepts, e.g. 

• Band to band tunneling 
• Topological insulators (gap less materials) 
• Band/Valley mixing etc. 

require multi band representations 

Topological insulators 

Nature Physics 6, 584 (2010) 

Band-to-band tunneling 

IEEE Elec. Dev. Lett. 30, 602 (2009) 

Today’s simulation requirements: research 

Academic and industrial research&development is and has been the driver of NEMO 
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NEMO5 origins + history 

NEMO5 and atomic representations 

NEMO5 solvers + physics 
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NEMO5 on supercomputers (scalability and compatibility) 
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Core Code / Theory Development 
• NEMO-1D      (Texas Instruments ‘94-’98, JPL ‘98-’03) 

»Roger Lake, R. Chris Bowen, Dan Blanks, Gerhard 
Klimeck 

• NEMO3D                (NASA JPL, Purdue, ’98-’07) 
»R. Chris Bowen, Fabiano Oyafuso, Seungwon Lee, 

Gerhard Klimeck 
• NEMO3D-peta                        (Purdue, ’06-’11) 

»Hoon Ryu, Sunhee Lee, Gerhard Klimeck 
• OMEN            (ETH, Purdue, ‘06-’11) 

»Mathieu Luisier, Gerhard Klimeck 
• NEMO5             (Purdue, ‘09-’12) 

»Michael Povolotsky, Hong-Hyun Park, Sebastian Steiger, Tillmann 
Kubis, Jim Fonseca, Jean Michel Sellier, Gerhard Klimeck 

»Zhengping Jiang, Lang Zeng, Daniel Mejia, Yu He 
Sunhee Lee, Mehdi Salmani, Hesam Ilati, Ganesh Hegde 
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Challenge: large variety of materials 

“Is Silicon approaching the end of it’s scalability?” 
 
Ongoing discussions: 
 III-V materials might outperform Si (higher mobilities), but Silicon has higher 

density of states 
Optically active materials are usually polar (III-V, II-VI) 
Graphene provides native 2D transport 
 Topological insulators offer unique transport properties 
 “Exotic” materials (e.g. MgO) might replace today’s dielectric barriers 
 Devices are so small, transport quality in metallic interconnects is important 
… 



NEMO5 sets up atomistic structures 

NEMO5: atomistic representation of devices 
 Simple-Cubic (for effective-mass band structure) 
 Diamond (Si, Ge   MOSFETs, UTBs, …) 
 Zincblende (GaAs, InSb, …   TFETs, HEMTs, QDs) 
 Wurtzite (nitrides  HEMTs, LEDs) 
 Rhombohedral (Bi2Te3  thermoelectrics) 
 Graphene 

passivated 
Bi2Te3 nanowire  



Zincblende, Wurtzite and Rhombohedral Crystals 

Corresponding Brillouin zones: 

Some crystal structures in NEMO5: 



3 steps to add yet another cyrstal structure 

How is it done in NEMO5: 
1) Define primitive vectors -> Bravais lattice 
2) Define basis (atoms in 1 unit cells) -> crystal structure 
3) Define bond radius -> connectivity 
4) (optional) Define conventional Miller notation  

(e.g. in wurtzite: (0001) = (001) in the primitive basis) 



Example: 4 unit cell zincblende material quantum well, [001] growth   

The minimal elementary cell (2 atoms) 
 
b1=  [001]   (growth direction) 
b2 = [110] 
b3 = [101] 

[001] 

[001] 

The typical conventional cell (8 atoms) 
 
b1=  [001]   (growth direction) 
b2 = [010] 
b3 = [100] 

NEMO5: Primitive and conventional unit cells 

NEMO5 allows to define your 
conventional unit cell in inputdecks 



NEMO5: arbitrary geometries 

silicon 
gate oxide 

source drain 
gate oxide 

nm 

nm
 

In53Ga47As 

real contact 

In52Al48As 

InP 
In52Al48As 

InAs 
In53Ga47As 

In52Al48As 

virtual contact 

In53Ga47As 

Si δ-doping 

D.-H. Kim, J. D. A. del Alamo, 
IEEE Trans. Elec. Dev. 57, 
1504 (2010) 

Source Drain 
Gate 

All models within NEMO5 can handle 1D, 2D, 3D and arbitrary geometries 

NEMO5 also covers: 
Alloy disorder 
Random dopants 
Ternary alloys 

Tutorial 2 Input and Visualization 
Learn how to set up devices in NEMO5 and how to visualize 



Realistic contact material: Metals in NEMO5 

Cu nanowire in NEMO5 

Challenges: 
Shrinking semiconductor device dimensions 
enhance influence of metallic leads 
Metals have long range interactions beyond 
standard 1st nearest neighbor tight binding 
models 

Lines: FP-LAPW- DFT* 
* Full Potential Linear Augmented Plane Wave 

Density Functional Theory 
Circles: NEMO5 fitted to FP-LAPW-DFT 

Ef 

FCC Copper bandstructure (DFT vs. NEMO5) 

NEMO5: 
Extended neighbor interactions included 
Bandstructure and transport in ideal 
metal structures verified (Cu, Ag, Au, Al, 
Pb) 

Tutorial 4B – Metals in NEMO5 
Learn how to use the 2nd NN tight binding model in NEMO5 for metals 



NEMO5: how to do parameter fitting 

Tutorial 4D – NEMO5&Python: tight binding parameter fitting 
Learn how to use python in conjunction with NEMO5 to fit tight binding parameters 



Realistic interfaces: NEMO5 and external solvers 

NEMO5: 
Pseudomorphic interfaces available 
Read in incommensurate heterostructures 
from external simulators possible (e.g. Reaxff) 

Si Cu Si Cu 

Large strain on the surface might require sophisticated molecular 
dynamics calculations – NEMO5 is compatible to that 

Challenges: 
Metals have different crystal structures than 
typical semiconductors 



Many materials require a sophisticated database 

NEMO5 database: 
One ascii file; default: NEMO/prototype/materials/all.mat 
Directly editable via inputdecks (convenient for test purposes) 

Semiconductor research spans over a huge variety of materials 
Simulators have to provide a database that is… 
 Universal: many different parameter sets (bandgap, effective mass, strain 

 constants, TB constants… 
General:  allow different parameters given by different authors 
 Flexible:  expandable to cover new parameter sets (for new models,…) 
 Editable:  easy to read and edit (avoid “getting lost”, no double entries,…) 



Many materials require a sophisticated database 

NEMO5 database: 
Capable to handle formulas (control language developed) 
 
 
 
 
 
 
 
 

Joseph Weinbub (http://www.iue.tuwien.ac.at/pdf/ib_2010/CP2010_Weinbub_1.pdf) (ViennaIPD): 
“Applications for scientific computing require a powerful control language to satisfy the need of control 
parameters, e.g. material properties, models to take into account, model parameters, process definitions, 
simulation modes, iteration schemes, and numerical behavior. As a result, control files grow in size, 
which results in decreased maintainability. 
Therefore a powerful control language has been developed …” * 
(* 2010 ViennaIPD - An Input Control Language for Scientific Computing, Josef Weinbub, Karl Rupp, 
Siegfried Selberherr, Institute for Microelectronics, Technische Universität Wien) 

Snapshot of all.mat: Simple example for a database formula 

http://www.iue.tuwien.ac.at/pdf/ib_2010/CP2010_Weinbub_1.pdf�


NEMO5: Database Rules 

Basic Parameters 

Complex Parameter 

Multiple Parameters 

Multiple Complex 
Parameters 

Si:Bands:TB:sp3d5sstar_SO:param_Boykin (all.mat) 
 
rule[$param$_SiGe_Si] = 0.5 * SiGe:Bands:TB:sp3d5sstar_SO:param_Boykin:$param1$_SiGe_SiGe + 0.5 * Si:Bands:TB:sp3d5sstar_
rule[$param$_SiGe_Ge] = 0.5 * SiGe:Bands:TB:sp3d5sstar_SO:param_Boykin:$param1$_SiGe_SiGe + 0.5 * Ge:Bands:TB:sp3d5ssta
rule[$param$_Si_Ge] = SiGe:Bands:TB:sp3d5sstar_SO:param_unknown:$param1$_Si_Ge;                                        
rule[$param$_Ge_Si] = SiGe:Bands:TB:sp3d5sstar_SO:param_unknown:$param1$_Ge_Si; 

NEMO/prototype/tests/ 
test_database_regex_nemo/DatabaseTutorial.pdf 

NEMO5 database: 
Sophisticated formulas/rules are supported 



NEMO5: Database Multiple Views 

Original image from:  http://www.imvis-eu.org/ 

NEMO/prototype/examples/Transport/TEST/datta.in 
Material  
{   
  tag                 = n  
  name                = Si   
  Lattice:a_lattice   = 0.3  
  …      
  doping_type      = N  
  doping_density   = 1e20  
}  
Material  
{   
  tag                 = nplus  
  name                = Si   
  Lattice:a_lattice   = 0.3  
  …      
  doping_type      = N  
  doping_density   = 5e19   
}      

NEMO5 allows to use materials as templates 
Change material parameters in the inputdeck 
to design your own material 

Original image from:  Datta, Superlatt. and Microstruct. 28, 253 
(2000) 
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Challenge: various physics involved 

Original question “What happens in that device?” yields lots of follow-up questions: 
 
What is the atomic structure? 

Heterostructures are usually lattice mismatched (strained) 
 

What are the electron and phonon states? 
Devices often produce confinement and interference effects (sophisticated 
bandstructures) 
 

 How are the electrons distributed? 
Doping and charge distribution require solutions of the electrostatics 
 

 How reliable are the device properties? 
Imperfect device growth, randomness and finite temperature deteriorate the ideal 
device performance 
 

 How large will be the current density for a given gate and supply voltage? 
Concrete transport properties depend on all other questions 



NEMO5: strain in nanostructures 

displacement vector and zz-component of 
strain tensor in a InAs lens-shaped 
quantum dot (~50 million InAs atoms) 

• Atomistic description using valence force field (VFF) method 
• Structure relaxation by minimizing an energy functional that 

depends on bond angles and bond lengths 
• Various models for energy  

functional available 
 

Tutorial 5B Strain in NEMO5 
Learn how to use NEMO5 to relax heterostructures 



NEMO5: phonon modes 

• Same physical model as strain relaxation 
• Hessian of energy functional is reused as dynamical matrix 

Bulk phonon dispersion 
for GaN in wurtzite phase 
 
calculated using Keating 
VFF model + Coulomb 
interaction 



NEMO5: electronic band structures 

 Any nearest-neighbor tight-binding model available (s,p,d,f,g,…) 
 Any Nth nearest-neighbor tight-binding model possible  

(2nd nearest neighbor TB used for metals) 
Many parametersets included in the database 

Bi2Te3 

U Γ Z F Γ L 

Tutorial 4 – NEMO5 and Schroedinger solver 
Learn how to use NEMO5 to calculation eigenstates and bandstructures in 
Silicon, Graphene, Metals and topological insulators 



NEMO5: heterostructure band structures 

Dangling bonds result in surface states  
Without further treatment: 
Surface states lie within interesting energy 
intervals (such as band gap) 

In-plane [111] GaAs quantum well bandstructure 

Bulk band gap 

|Ψ|2  Surface state 

In reality: 
Surface passivation or surface 
reconstruction shifts surface states out of 
relevant energy range 



NEMO5: Passivation of surfaces 

During device construction: 
Hydrogen atoms are added half way to the next (missing) semiconductor atom 
Only bonding direction is relevant for the passivation model 

L 

L/2 

General and fast: 
 Allows any kind of surface 
No transformation required 

(surface hybridization is 
given automatically) 



NEMO5: Passivation of general surfaces 

• GaAs [111] quantum well • GaAs quantum dot 

Important: Surface passivation 
NEMO 5 has general passivation 

scheme 

Tutorial 4D – Graphene in NEMO5 
Learn how to correctly set up NEMO5 for passivation 



NEMO5: wave functions in quantum dots 

NEMO5: InAs quantum dot embedded in GaAs 

Ground 
State 

1st 
Excited 
State 

2nd 
Excited 
State 

3rd 
Excited 
State 

E=1.123eV       1.354eV         1.523eV         1.587eV 

Tutorial 5 Quantum Dots in NEMO5 
Learn how to use NEMO5 on quantum dots 



NEMO5: strain corrections to tight-binding 

 External strain definable in input deck (via full epsilon matrix) 
 Strain in TB according to Boykin et al. 2002 implemented and tested 
 Strain in TB according to Boykin et al. 2010 implemented, and tested 

Exact agreement with published data 

LH 
HH 

SOH 

CB 

CB 

HH/LH 

SOH 

Biaxial strain Hydrostatic strain 

k.p 

Colors: tight binding 

Colors: tight binding 

Symbols: NEMO5 

Lines: Literature 

Tutorial 5C Quantum Dots in NEMO5 
Learn how to calculate strain effects on electronic bandstructures 



NEMO5: 2 different charge models 

Results of electron-core model: 
Self-consistent Poisson potential = smooth 
correction to empirical TB Hamiltonian 

Atomic Poisson potential in 6nm Bi2Te3 layer 

Electron-core model: 
Perfectly smooth correction to  
bulk e-e interaction in TB parameters 

Typical for atomic tight binding: 
Charge density oscillations 

Atomic Space charge in 6nm Bi2Te3 layer 

NEMO5: 
Charge self-consistent tight-binding 

Schrödinger/Poisson 
 Standard electron-hole model 
Novel “electron-core” model: 

All states are electronic 
 Every atom core contains intrinsic ion charge 

(parameterization and material dependent) 

Motivation: 
Most semiconductor devices allow to 
distinguish electrons from holes 
but 
Broken-gap nanodevices and topological 
insulators have no band gap and do not allow 
to distinguish 



NEMO5: Schrödinger-Poisson calculations 

Electron-hole example of 1d_hetero 
nanohub tool 
»  semiclassical density 
»  quantum density, numerical k-space 
»  quantum density, analytical k-space 

(assuming a parabolic dispersion) 
 
 
Tutorial 4A Topological Insulators 
Learn how to use NEMO5 to perform Schroedinger-Poisson calculations 



Topological insulators in NEMO5 

NEMO5: Warping of the Fermi surface 

Experiment: 

Science 325, 178 (2009) 

Motivation: 
Unique transport features of topological 
insulators (ballistic surface transport 
expected) 
Question: surface conductance tunable? 

Method : 
Charge self-consistent tight-binding 
(sp3d5s*) Schrödinger/Poisson (electron-
core model) 
Spin analysis and scattering rates 

Results: 
Agreement with experiment: 
warping of Fermi surface 
spin polarized surface states 
Dirac hyperbolas in thin Bi2Te3 layers 



Quantum transport models 
Nonequilibrium Green’s function (NEGF) formalism 
Open-boundary transfer matrix method (“wavefunction” formalism) 
Top of the barrier transport model 

 Various physical models 
Ohmic and Schottky contacts 
Simple and fast phonon scattering model 
Strain under test 
Magnetic field under test 

General simulation structures 
1D, 2D, 3D structures 
Heterostructures, arbitrary shapes, multiple contacts 

 4-level MPI parallelization 
bias, energy, momentum, space 

Quantum and semi-classical hybrid simulation 

Transport capabilities of NEMO5 



NEMO5: Transport in layered Structures 

GaAs 

Al
G

aA
s 

G
aA

s 

Al
G

aA
s 

GaAs 

1e18cm-3                     2e15cm-3                    1e18cm-3        doping 

quantum region semiclassical region semiclassical  

NEGF calculations: 
 time consuming 
 can be charge unstable 

NEMO5: User may… 
 limit quantum region to 

relevant device 
regions 

 apply approximations 
to other device regions 



NEMO5: Transport in Nonplanar Structures 

SiO2 
Si 

SiO2 

Potential and density in ultra thin body 
IV-characteristics of ultra thin body 

Potential and density in nanowires 

Tutorial 6A Transport in NEMO5 
Learn how to use NEMO5 to calculate IV characteristics 



NEMO5: Multidimensional graphs 

Silicon n-type UTB  
n = 1020/cm3 

Vsource = 0 V (Schottky) 
Vdrain = 0 V   (Ohmic) 
Vgate = 0.5 V (Gate) 
 
Charge self-consistent 
simulation with phonon 
scattering 

43 

1D plot line 

P
os

iti
on

 (n
m

) 

Position (nm) electron 
density (cm-3) 

Ohmic contact Schottky contact gate contact 

Devices with different 
types of contacts 
3D, 2D, and 1D output 
along a line 

2D Potential landscape 



NEMO5: tunneling field effect transistor 

NEMO5: 
Transport in band-to-band tunneling devices 
Geometry affects the device performance 

Energy and spatially resolved current  

Gate drain extension 

Y 
X 

Tunneling between valence and conduction 
band tunable via gate geometry 

undercut 

Vg=-0.5V 

Vg=-0.5V 

Tutorial 6B Band to band tunneling in NEMO5 
Learn how to use NEMO5 to calculate interband tunneling 



NEMO5: features for transport 

Electron models: effective mass, 1st and 2nd NN tight binding  

Inhomogeneous, self adaptive energy grid 

Simplified inelastic scattering on phonons 

Under testing: 

Transport in strained systems 

Nonlocal inelastic scattering 

LRA method (efficiency improvement) 

Under development/implementation: 

Spatial parallelization perpendicular to transport  

Phonon transport 
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NEMO5 – an expandable code library 

NEMO5 supports & welcomes that! 
Object oriented C++ code: 

Encapsulation  
Write code without interfering with the rest of NEMO5 
Polymorphism & Abstraction 
Most NEMO5 code is flexible and handles also new models 
Avoid rewriting code “just” because of a new model/crystal structure 
Inheritance  
NEMO5 code is written efficiently avoiding “copy&paste” 

“What if I want to implement my own model?” 

Zhengping Jiang (Graduate student of Klimeck group): 
“Learning NEMO5, implementing and testing a new Hamiltonian took me 2 weeks. 
After that, it worked with all NEMO5 features.” 



NEMO5: Automated documentation with Doxygen 

NEMO5: 
NEMO5 code is compatible with Doxygen 
Doxygen documentation requires only a web browser 
(NEMO/prototype/doc/html/index.html) 

Snapshot of Doxygen’s “Graphical Class Hierarchy” of NEMO5 

Browsing large source code can be cumbersome (even with Visual Studio or Eclipse) 



NEMO5: easy prototyping new code in Python 

“What if I want to quickly test a new idea?” 

Prototype in Python: 
 Python is linked to NEMO5 

usage with “nemo python_file.py”  
(python_file.py needs to be compatible) 
 

 The linked Python version supports NumPy and SciPy 
 

 NEMO5 can load Python scripts and Python solvers 
 

 Write python code and embed NEMO5 routines within your Python script 
(similar to matlab toolbox) 

NEMO5?! 



NEMO5 & Python: Python solver 

NEMO5 solvers have a common API (to set up, to solve, to communicate, …) 
Your own new solvers have to stick to this API 

C++ Solver Python Solver 

void MyNewSolver::do_solve() def do_solve( self ): 

void MyNewSolver::do_init(){} def do_init ( self ): 

void MyNewSolver::do_reinit(){} def do_reinit ( self ): 

void Simulation::do_output(){} def do_output ( self ): 

void MyNewSolver::get_data( string v, type& ) 
      get_data(vector<complex<double> >) 

def get_data_type( v ) 
      get_data_list_complex() 

void MyNewSolver::get_data(string v, type1, type2&, . ) 
      get_data(unsigned int, vector<double>, .) 

def get_type1_data_type2_.( v) 
      get_uint_data_list_double ( v ) 



NEMO5 & Python: Metasolver 

Standard NEMO5 situation: 
Several solvers are defined 
Some options are task specific  
(obsolete for specific tasks) 
Some option names are “developer 
style” 
 
Long and complex inputdeck 

Solution: Metasolver 
Store frequently used solver settings in 
“external” python file 
NEMO5 inputdeck: only relevant options 
are visible 
Option names are convertible 
 
Short inputdeck (1 Solver only) 

Tutorial 4D Python & NEMO5 
Learn how to prototype in Python and use NEMO5 with it 
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NEMO5: MPI parallelization 

NEMO5 is MPI parallelized: 
• k-space and x-space parallelization 

for Schrödinger-Poisson 
• x-space parallelization for Strain 
• V, k, E and slab parallelization 

for NEGF-Poisson and WF-Poisson 

CPU 6 

CPU 2 CPU 1 

CPU 4 

  CPU 5 

CPU 3 

CPU 7 CPU 8 

CPU15 CPU16 

Device calculations are typically very time consuming: 
10x10x10 nm Si gives ~ 64k atoms ~ 1.3 million degrees of freedom 
Many matrix operations scale like N2 – N3 



within NEMO5: Linear Solvers and Eigensolvers 

Linear and Newton solvers: PETSc 
 lots of parallel direct & iterative solvers 
 interface to LAPACK, MUMPS, 

SuperLU, HYPRE 

Eigensolvers: SLEPc 
Uses PETSc for linear solvers, 

parallelism 
 interface to PARPACK 

(problem in RCAC installation) 



MPI status in NEMO5 
• Massively parallel numerical solvers implemented 

» Externally developed libraries SLEPc, PETSc and Libmesh 
• Scaling reached up to 100k CPUs 
• Efficient parallel writing of data to disk implemented in NEMO5 
• Fast initialization for NEMO5 on up to 100k CPUs 

NEMO5: MPI scalability 

NEMO5: 
Very good scaling shown 
up to 100k CPUs 



NEMO5: platform compatibility 

Architectures where NEMO5 can be compiled and run: 
• RCAC machines coates, steele, rossmann, hansen, … (GCC & Intel) 
• Ubuntu (GCC) 
• nanoHUB.org workspace  (Intel) 
• jaguar.ccs.ornl.gov (GCC) 
• ranger.tacc.utexas.edu (GCC) 
• kraken.ccs.ornl.gov (GCC) 
• Your Linux system… 



NEMO5 lecture – overview  

NEMO5 origins + history 

NEMO5 and atomic representations 

NEMO5 solvers + physics 

NEMO5 expandability + flexibility 

NEMO5 on supercomputers (scalability and compatibility) 

NEMO5 support (for output and users) 



Input and Output 

• NEMO5 supported formats: 
 

• VTK 
 
 
 

• DX  
(simple-cubic) 
 

• XYZ 
 

• PDB (zincblende struct. only)  

• Text files (eigenvalues, 1D graphs) 

 

VisIt or 
ParaView 

jmol 

NanoViz 

Different purposes and visualization software require different output format 



NEMO5: on nanoHUB 

Specific purposes typically require a small set of options 
Full flexibility of NEMO5 burdens the fast user 

nanoHUB.org offers GUI controlled tools 
powered by NEMO5: 

• Quantum Dot Lab 
• 1d Heterostructure Design Tool 
• Crystal Viewer 
• RTD Simulation with NEGF 
• Brillouin Zone Viewer 



Global Impact of NEMO Software Stack 

8 NEMO/OMEN based codes Impact: 
• Last 12 months: 

• 3,645     Users  
• 47,295 Simulation Runs 

• Overall: 
• 10,837    Users  
• 166,793  Simulation Runs 

35 Klimeck tools: 
- 22,000 users 
- >820,000 simulations 

Systemic Education: 
>5,700 students, 461 courses 
>60 universities 



NEMO5: support and discussion forum 

NEMO5 distribution and support group on nanohub 

Post questions and look for answers in the 
NEMO5 discussion forum 
 
Any feedback/suggestions are very welcome 
 
You can contribute to the code, too 



Schedule for the NEMO5 tutorial 

Device Modeling with NEMO5 
10:00 Break 
10:30 Lecture 14 (NEMO5 Team): “NEMO5 Introduction” 
12:00 LUNCH 
1:30 Tutorial 1 (NEMO5 Team): “NEMO5 Technical Overview” 
3:00 Break 
3:30 Tutorial 2 (NEMO5 Team): “NEMO5 Input and Visualization”  
4:30 Tutorial 3 first part (NEMO5 Team): “Models” 
5:00 Adjourn 
 



Schedule for the NEMO5 tutorial 

Friday, July 20 
8:00 Coffee and rolls 
8:30 Tutorial 3 second part (NEMO5 Team): “NEMO5 Models” 
9:00 Tutorial 4 first part (NEMO5 Team): “Device Simulation – Graphene” 
10:00 Break 
10:30 Tutorial 4 second part (NEMO5 Team): “Device Simulation – Graphene” 
 
 
 
 
12:00 LUNCH 
1:30 Tutorial 5 (NEMO5 Team): “Device Simulation – Quantum Dots” 
 
 
 
3:00 Break 
3:30 Tutorial 6 (NEMO5 Team) : “Device Simulation – Transistor” 
 
5:00 2012 Summer School Adjourns 
 This time schedule is flexible adjusting to your needs and interests 

4A Topological Insulators 
4B Metals 
4C Graphene 
4D Python+NEMO5 

5A Quantum Dots Introduction 
5B Strain 
5C Quantum Dots 

6A Transport (DG MOSFETs) 
6B Transport (BTBT)  



Conclusion 

NEMO5: 
Multipurpose, multiscale highly parallelized nanodevice simulation tool 
Compatible with many external software (both for output and input) 
Can be used as a tool or as a library 
 
NEMO5 is under constant development 
 Your feedback is very valuable to us! 

Thank you! Sponsors: 
SRC, GRC, NSF, 
DARPA, NRI, 
nanohub.org, 
Intel, Samsung, 
Global foundries, 
IBM, Lockheed Martin 
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