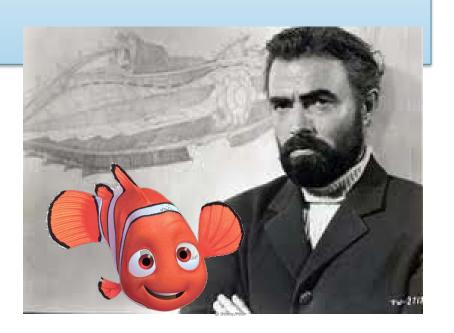


NEMO5 Introduction

Tillmann Kubis, Michael Povolotskyi, Jean Michel Sellier, Jim Fonseca, Gerhard Klimeck

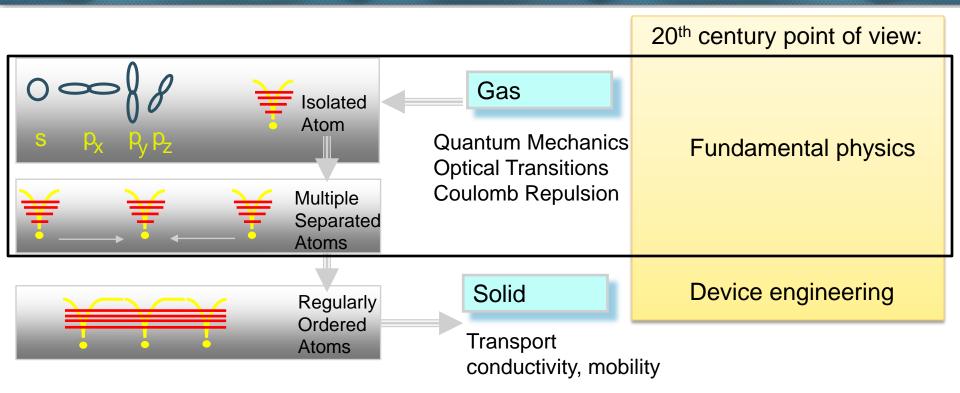
Network for Computational Nanotechnology (NCN)
Electrical and Computer Engineering


What is NEMO?

What can NEMO do?

Why NEMO and not something else?

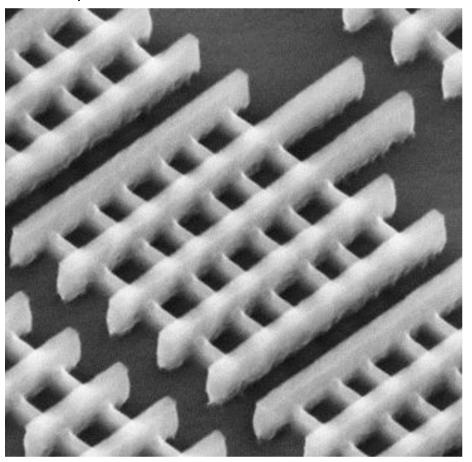
Where can you find NEMO?



A change in the view of the world

Today:

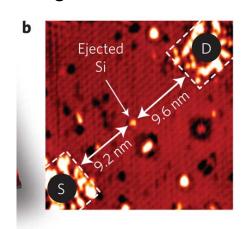
Devices enter the realm of countable atoms

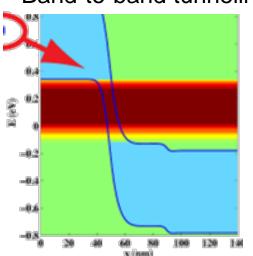

Distinction of individual bands (e.g. CB, VB) becomes artificial

Today's simulation requirements: industry

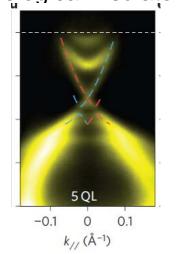
Example: Intel's 22 nm Tri-Gate Transistor

http://newsroom.intel.com/docs/DOC-2035


Real world effects:
Strained structures
Imperfect growth
Impurities
Alloy disorder
Surface and interface
roughness
3D geometry affects electrons
Scattering on lattice vibrations
Gate leakage
Contact resistance
Joule heating


Today's simulation requirements: research

Single atom transistor


Nature Nanotechnology 7, 242 (2012)

Band-to-band tunneling

IEEE Elec. Dev. Lett. 30, 602 (2009)

Topological insulators

Nature Physics 6, 584 (2010)

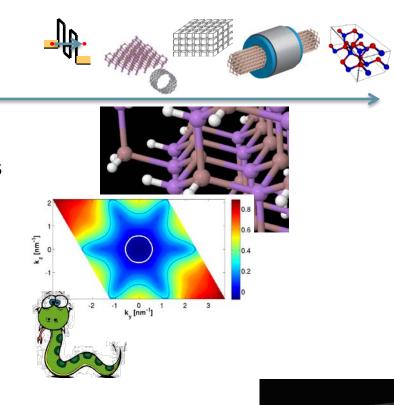
Countable device atoms suggest atomistic descriptions Modern device concepts, e.g.

- Band to band tunneling
- Topological insulators (gap less materials)
- Band/Valley mixing etc.

require multi band representations

Academic and industrial research&development is and has been the driver of NEMO

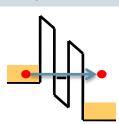
NEMO5 origins + history

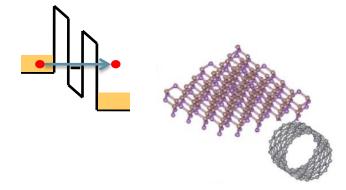

NEMO5 and atomic representations

NEMO5 solvers + physics

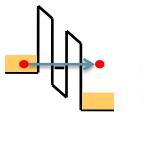
NEMO5 expandability + flexibility

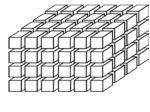
NEMO5 on supercomputers (scalability and compatibility)

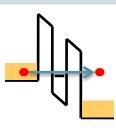

NEMO5 support (for output and users)

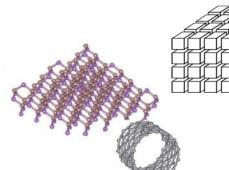


	NEMO-1D
Transport	Yes
Dim.	1D
Atoms	~1,000
Crystal	[100] Cubic, ZB
Strain	-
Multi- physics	-
Parallel Comp.	3 levels 23,000 cores



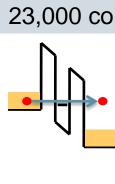

	NEMO-1D	NEMO-3D
Transport	Yes	-
Dim.	1D	any
Atoms	~1,000	50 Million
Crystal	[100] Cubic, ZB	[100] Cubic, ZB
Strain	-	VFF
Multi- physics	-	
Parallel Comp.	3 levels 23,000 cores	1 level 80 cores

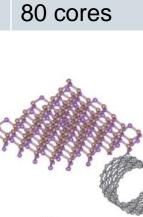

	NEMO-1D	NEMO-3D	NEMO3Dpeta
Transport	Yes	-	-
Dim.	1D	any	any
Atoms	~1,000	50 Million	100 Million
Crystal	[100] Cubic, ZB	[100] Cubic, ZB	[100], Cubic,ZB, WU
Strain	-	VFF	VFF
Multi- physics	-		
Parallel Comp.	3 levels 23,000 cores	1 level 80 cores	3 levels 30,000 cores

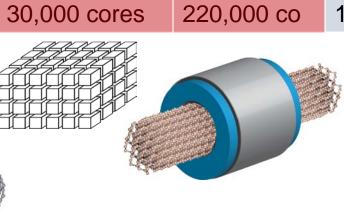


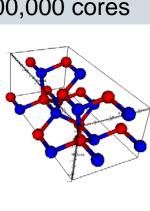


	NEMO-1D	NEMO-3D	NEMO3Dpeta	OMEN
Transport	Yes	-	-	Yes
Dim.	1D	any	any	Almost any
Atoms	~1,000	50 Million	100 Million	~140,000
Crystal	[100] Cubic, ZB	[100] Cubic, ZB	[100], Cubic,ZB, WU	Any Any
Strain	-	VFF	VFF	-
Multi- physics	-			
Parallel Comp.	3 levels 23,000 cores	1 level 80 cores	3 levels 30,000 cores	4 levels 220,000 co









	NEMO-1D	NEMO-3D	NEMO3Dpeta	OMEN	NEMO5
Transport	Yes	-	-	Yes	Yes
Dim.	1D	any	any	any	any
Atoms	~1,000	50 Million	100 Million	~140,000	100 Million
Crystal	[100] Cubic, ZB	[100] Cubic, ZB	[100], Cubic,ZB, WU	Any Any	Any Any
Strain	-	VFF	VFF	-	MVFF
Multi- physics	-				Spin, Classical
Parallel Comp.	3 levels 23,000 cores	1 level 80 cores	3 levels 30,000 cores	4 levels 220,000 co	4 levels 100,000 cores
	N		MANNA		

Core Code / Theory Development

• NEMO-1D

- (Texas Instruments '94-'98, JPL '98-'03)
- »Roger Lake, R. Chris Bowen, Dan Blanks, Gerhard Klimeck
- NEMO3D

(NASA JPL, Purdue, '98-'07)

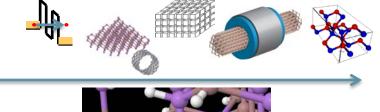
- »R. Chris Bowen, Fabiano Oyafuso, Seungwon Lee, Gerhard Klimeck
- NEMO3D-peta

(Purdue, '06-'11)

- »Hoon Ryu, Sunhee Lee, Gerhard Klimeck
- OMEN

(ETH, Purdue, '06-'11)

- »Mathieu Luisier, Gerhard Klimeck
- NEMO5


(Purdue, '09-'12)

- »Michael Povolotsky, Hong-Hyun Park, Sebastian Steiger, Tillmann Kubis, Jim Fonseca, Jean Michel Sellier, Gerhard Klimeck
- »Zhengping Jiang, Lang Zeng, Daniel Mejia, Yu He Sunhee Lee, Mehdi Salmani, Hesam Ilati, Ganesh Hegde

NEMO5 origins + history

NEMO5 and atomic representations

NEMO5 solvers + physics

NEMO5 expandability + flexibility

NEMO5 on supercomputers (scalability and compatibility)

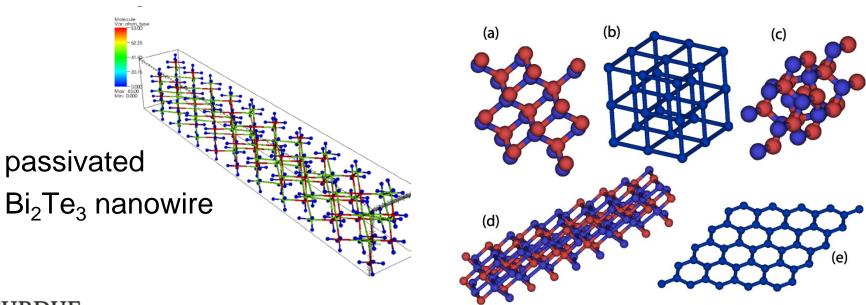
NEMO5 support (for output and users)

Challenge: large variety of materials

"Is Silicon approaching the end of it's scalability?"

Ongoing discussions:

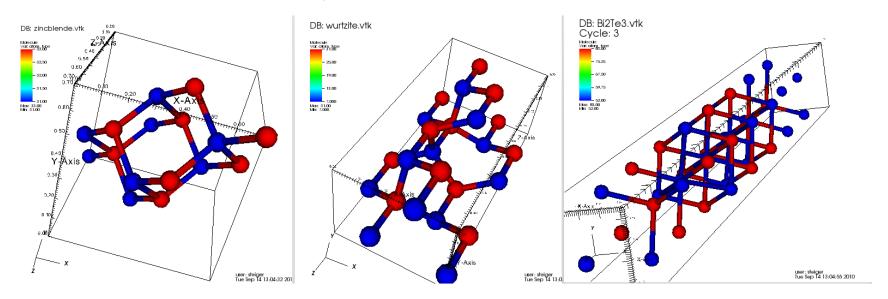
- > III-V materials might outperform Si (higher mobilities), but Silicon has higher density of states
- > Optically active materials are usually **polar** (III-V, II-VI)
- > Graphene provides native 2D transport
- > Topological insulators offer unique transport properties
- > "Exotic" materials (e.g. MgO) might replace today's dielectric barriers
- > Devices are so small, transport quality in **metallic** interconnects is important
- > ...

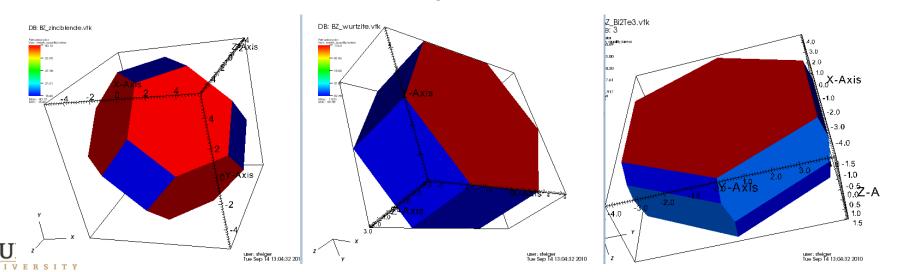


NEMO5 sets up atomistic structures

NEMO5: atomistic representation of devices

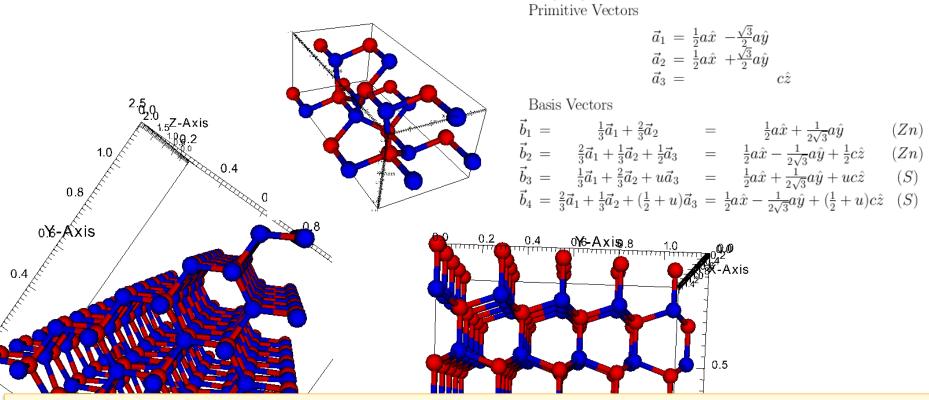
- Simple-Cubic (for effective-mass band structure)
- ➤ Diamond (Si, Ge → MOSFETs, UTBs, ...)
- ➤ Zincblende (GaAs, InSb, ... → TFETs, HEMTs, QDs)
- ➤ Wurtzite (nitrides → HEMTs, LEDs)
- ➤ Rhombohedral (Bi₂Te₃ → thermoelectrics)
- > Graphene





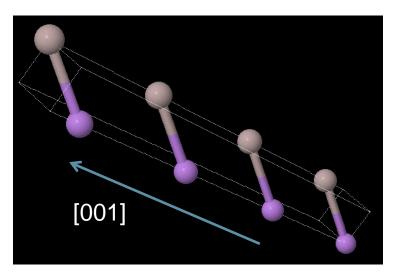
Zincblende, Wurtzite and Rhombohedral Crystals

Some crystal structures in NEMO5:


Corresponding Brillouin zones:

3 steps to add yet another cyrstal structure

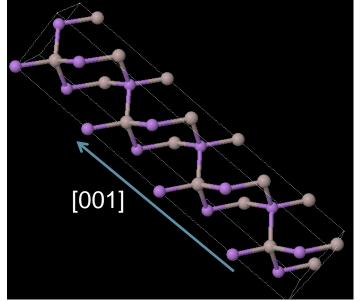
B4 (ZnS)


How is it done in NEMO5:

- 1) Define primitive vectors -> Bravais lattice
- 2) Define basis (atoms in 1 unit cells) -> crystal structure
- 3) Define bond radius -> connectivity
- 4) (optional) Define conventional Miller notation (e.g. in wurtzite: (0001) = (001) in the primitive basis)

NEMO5: Primitive and conventional unit cells

Example: 4 unit cell zincblende material quantum well, [001] growth



The minimal elementary cell (2 atoms)

$$\mathbf{b}_1 = [001]$$
 (growth direction)

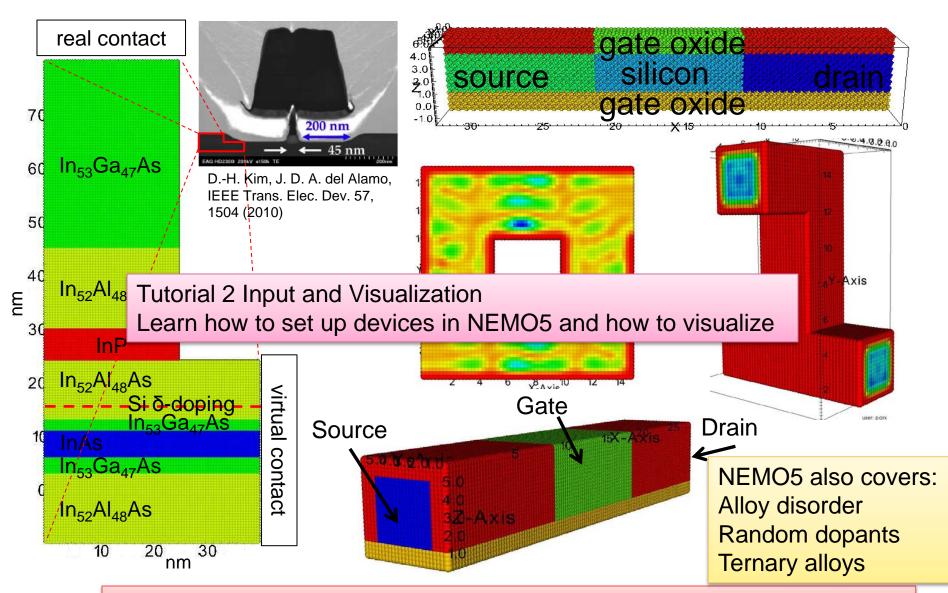
$$\mathbf{b}_2 = [110]$$

$$\mathbf{b}_3 = [101]$$

The typical conventional cell (8 atoms)

$$\mathbf{b}_1 = [001]$$
 (growth direction)

$$\mathbf{b}_2 = [010]$$

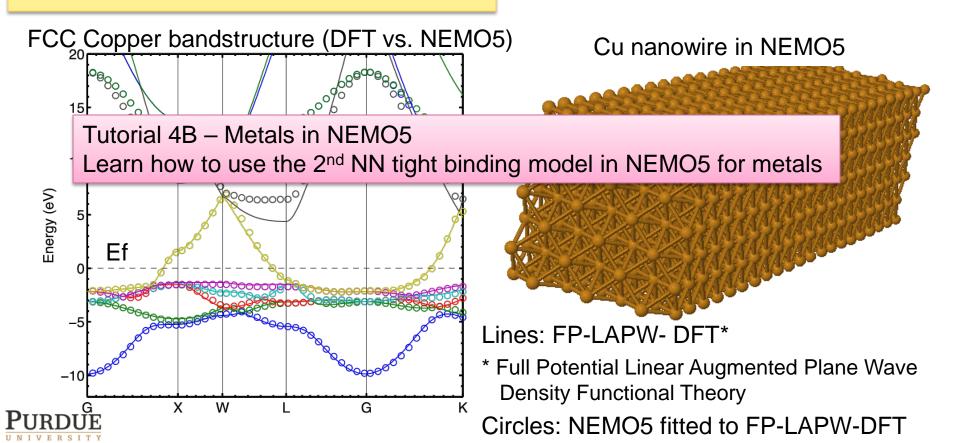

$$\mathbf{b}_3 = [100]$$

NEMO5 allows to define your conventional unit cell in inputdecks

NEMO5: arbitrary geometries

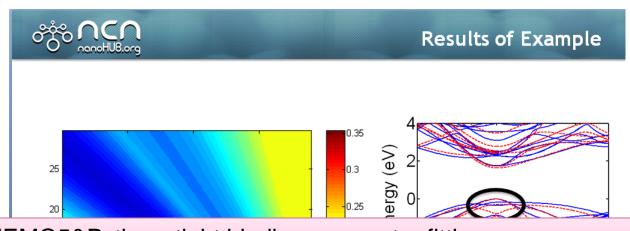
RDUE

All models within NEMO5 can handle 1D, 2D, 3D and arbitrary geometries

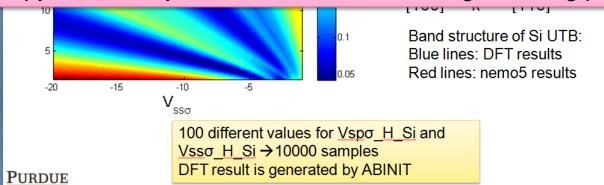

Realistic contact material: Metals in NEMO5

Challenges:

Shrinking semiconductor device dimensions enhance influence of metallic leads
Metals have long range interactions beyond standard 1st nearest neighbor tight binding models

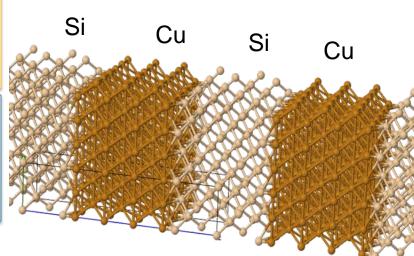

NEMO5:

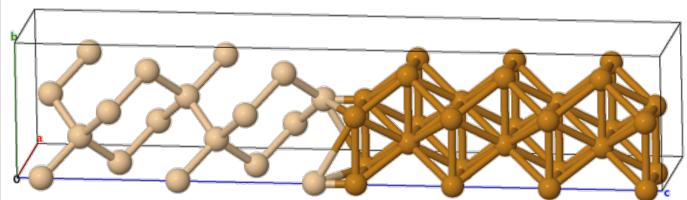
Extended neighbor interactions included Bandstructure and transport in ideal metal structures verified (Cu, Ag, Au, Al, Pb)



NEMO5: how to do parameter fitting

Tutorial 4D – NEMO5&Python: tight binding parameter fitting Learn how to use python in conjunction with NEMO5 to fit tight binding parameters


Realistic interfaces: NEMO5 and external solvers


Challenges:

Metals have different crystal structures than typical semiconductors

NEMO5:

Pseudomorphic interfaces available Read in incommensurate heterostructures from external simulators possible (e.g. Reaxff)

Large strain on the surface might require sophisticated molecular dynamics calculations – NEMO5 is compatible to that

Many materials require a sophisticated database

Semiconductor research spans over a huge variety of materials Simulators have to provide a database that is...

➤ Universal: many different parameter sets (bandgap, effective mass, strain

constants, TB constants...

➤ General: allow different parameters given by different authors

> Flexible: expandable to cover new parameter sets (for new models,...)

➤ Editable: easy to read and edit (avoid "getting lost", no double entries,...)

NEMO5 database:

One ascii file; default: NEMO/prototype/materials/all.mat Directly editable via inputdecks (convenient for test purposes)

```
#SO_P_Ge = 0.20264;

#SO_D_Ge = 0;

V_S_P_Sigma_Ge_Ge = 2.73135;

V_P_D_Sigma_Ge_Ge = -2.00115;

V_Sstar_P_Sigma_Ge_Ge = 2.68638;

V_S_D_Sigma_Ge_Ge = -2.64779;

V_P_D_Pi_Ge_Ge = 2.10953;

V_Sstar_D_Sigma_Ge_Ge = -1.12312;

V_S_S_Sigma_Ge_Ge = -1.39456;

V_Sstar_S_Sigma_Ge_Ge = -2.0183;

V_S_Sstar_Sigma_Ge_Ge = -2.0183;

V_S_Star_Sigma_Ge_Ge = -2.0183;

V_S_Star_Sigma_Ge_Ge = -3.5668;

V_P_P_Sigma_Ge_Ge = 4.28921;
```


Many materials require a sophisticated database

Joseph Weinbub (http://www.iue.tuwien.ac.at/pdf/ib_2010/CP2010_Weinbub_1.pdf) (ViennaIPD): "Applications for scientific computing require a powerful control language to satisfy the need of control parameters, e.g. material properties, models to take into account, model parameters, process definitions, simulation modes, iteration schemes, and numerical behavior. As a result, control files grow in size, which results in decreased maintainability.

Therefore a powerful control language has been developed ..." *

(* 2010 ViennalPD - An Input Control Language for Scientific Computing, Josef Weinbub, Karl Rupp, Siegfried Selberherr, Institute for Microelectronics, Technische Universität Wien)

NEMO5 database:

Capable to handle formulas (control language developed)

Snapshot of all.mat: Simple example for a database formula

NEMO5: Database Rules

NEMO5 database: Sophisticated formulas/rules are supported

NEMO/prototype/tests/ test_database_regex_nemo/DatabaseTutorial.pdf

 $rule[\$param\$_XX] = XX:\$param1\$$

Basic Parameters

 $rule[YY_\$param\$_XX] = XX:\$param1\$ + YY:\$param1\$$

Complex Parameter

 $rule [\$param\$_XX_\$param\$_YY] = XX:\$param1\$ + YY:\$param2\$$

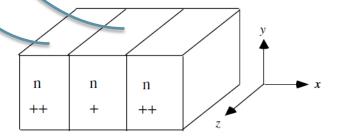
Multiple Parameters

 $rule [\$param\$_\$param\$] = \$param1\$:\$param2\$ + XX:\$param2\$ + YY:\$param2\$$

Multiple Complex Parameters

Si:Bands:TB:sp3d5sstar_SO:param_Boykin (all.mat)

rule[\$param\$_SiGe_Si] = 0.5 * SiGe:Bands:TB:sp3d5sstar_SO:param_Boykin:\$param1\$_SiGe_SiGe + 0.5 * Si:Bands:TB:sp3d5sstar_rule[\$param\$_SiGe_Ge] = 0.5 * SiGe:Bands:TB:sp3d5sstar_SO:param_Boykin:\$param1\$_SiGe_SiGe + 0.5 * Ge:Bands:TB:sp3d5sstar_rule[\$param\$_Si_Ge] = SiGe:Bands:TB:sp3d5sstar_SO:param_unknown:\$param1\$_Si_Ge;
rule[\$param\$_Ge_Si] = SiGe:Bands:TB:sp3d5sstar_SO:param_unknown:\$param1\$_Ge_Si;


NEMO5: Database Multiple Views

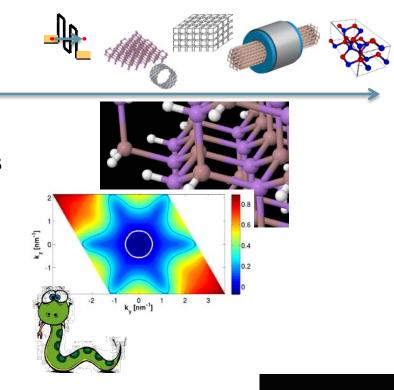
```
NEMO/prototype/examples/Transport/TEST/datta.in
Material
 tag
                                       = n
                                       = Si
 name
 Lattice:a_lattice
                                       = 0.3
 doping_type
                                       = N
 doping_density
                                      = 1e20
Material
                                       = nplus
 tag
                                       = Si
 name
 Lattice:a lattice
                                       = 0.3
 doping_type
                                       = N
                                      = 5e19
 doping_density
```


Original image from: http://www.imvis-eu.org/

NEMO5 allows to use materials as templates Change material parameters in the inputdeck to design your own material

Original image from: Datta, Superlatt. and Microstruct. **28**, 253 (2000)

NEMO5 origins + history


NEMO5 and atomic representations

NEMO5 solvers + physics

NEMO5 expandability + flexibility

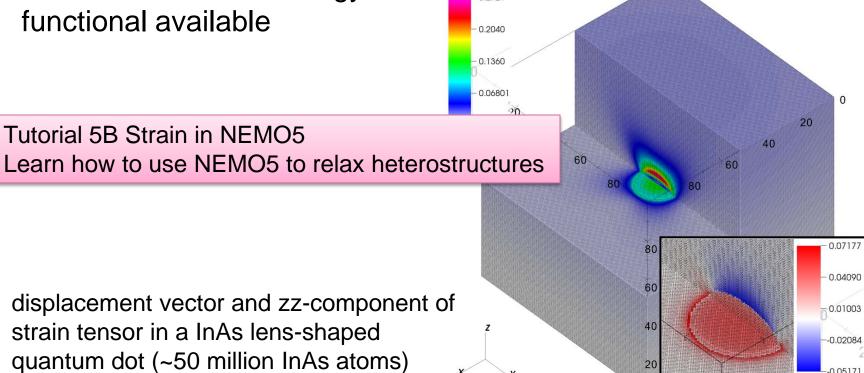
NEMO5 on supercomputers (scalability and compatibility)

NEMO5 support (for output and users)

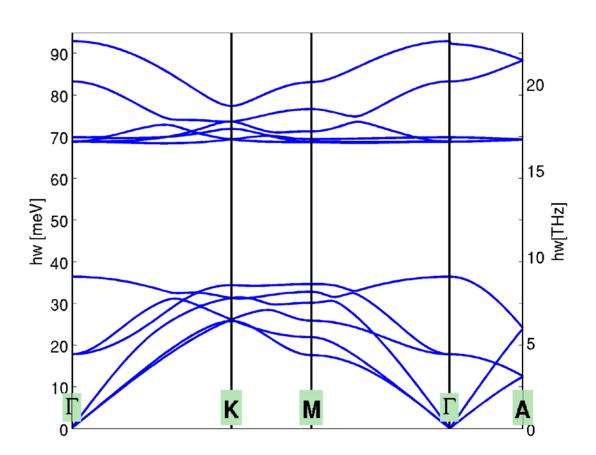
Challenge: various physics involved

Original question "What happens in that device?" yields lots of follow-up questions:

- What is the atomic structure?
 Heterostructures are usually lattice mismatched (strained)
- What are the electron and phonon states?
 Devices often produce confinement and interference effects (sophisticated bandstructures)
- ➤ How are the electrons distributed?
 Doping and charge distribution require solutions of the electrostatics
- ➤ How reliable are the device properties? Imperfect device growth, randomness and finite temperature deteriorate the ideal device performance
- ➤ How large will be the current density for a given gate and supply voltage?
 Concrete transport properties depend on all other questions



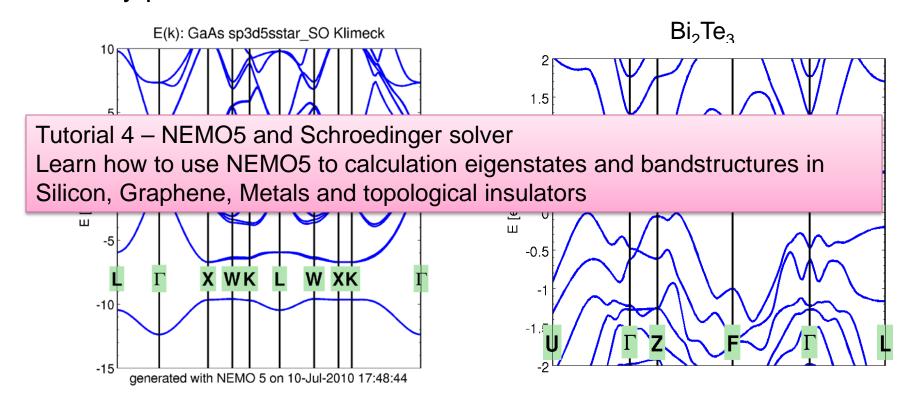
- Atomistic description using valence force field (VFF) method
- Structure relaxation by minimizing an energy functional that depends on bond angles and bond lengths



abs(d)

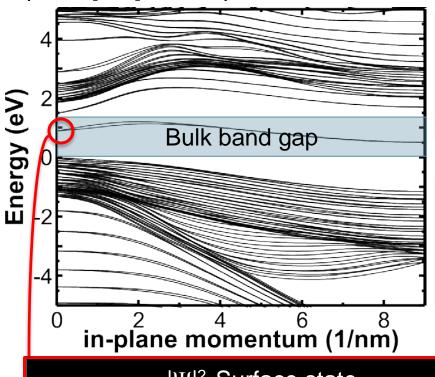
- Same physical model as strain relaxation
- Hessian of energy functional is reused as dynamical matrix

Bulk phonon dispersion for GaN in wurtzite phase


calculated using Keating VFF model + Coulomb interaction

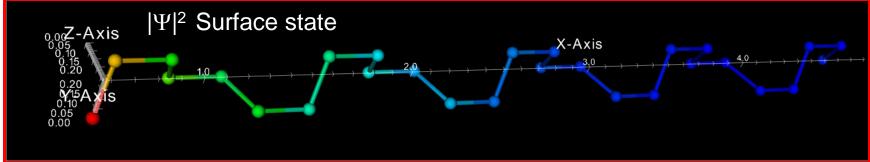
NEMO5: electronic band structures

- > Any nearest-neighbor tight-binding model available (s,p,d,f,g,...)
- ➤ Any Nth nearest-neighbor tight-binding model possible (2nd nearest neighbor TB used for metals)
- Many parametersets included in the database



NEMO5: heterostructure band structures

In-plane [111] GaAs quantum well bandstructure

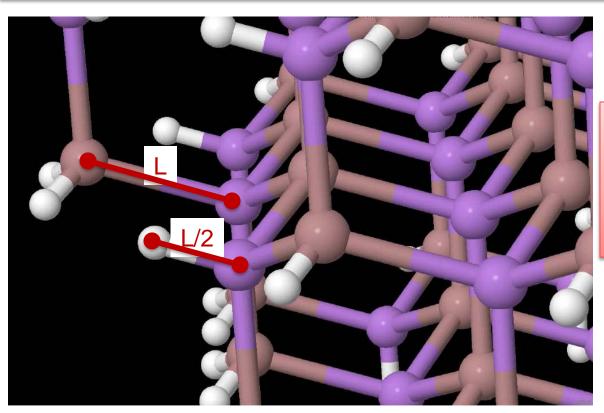


Dangling bonds result in surface states Without further treatment:

Surface states lie within interesting energy intervals (such as band gap)

In reality:

Surface passivation or surface reconstruction shifts surface states out of relevant energy range

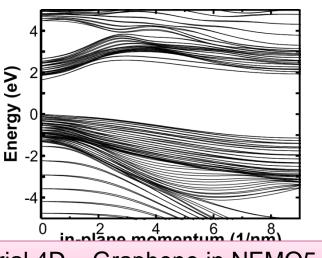


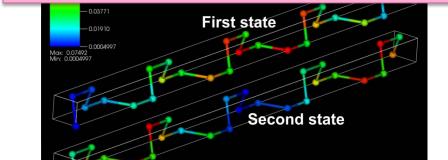
NEMO5: Passivation of surfaces

During device construction:

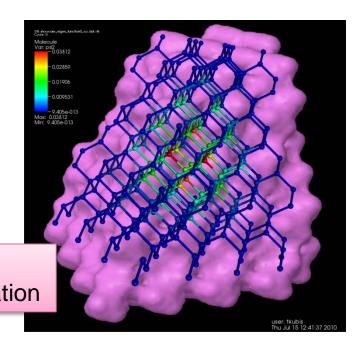
Hydrogen atoms are added half way to the next (missing) semiconductor atom Only bonding direction is relevant for the passivation model

General and fast:


- ➤ Allows any kind of surface
- No transformation required (surface hybridization is given automatically)

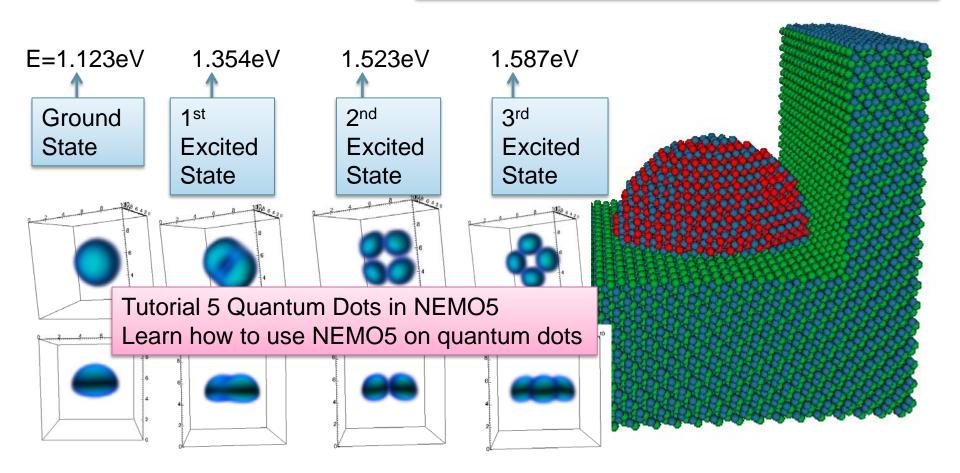


NEMO5: Passivation of general surfaces

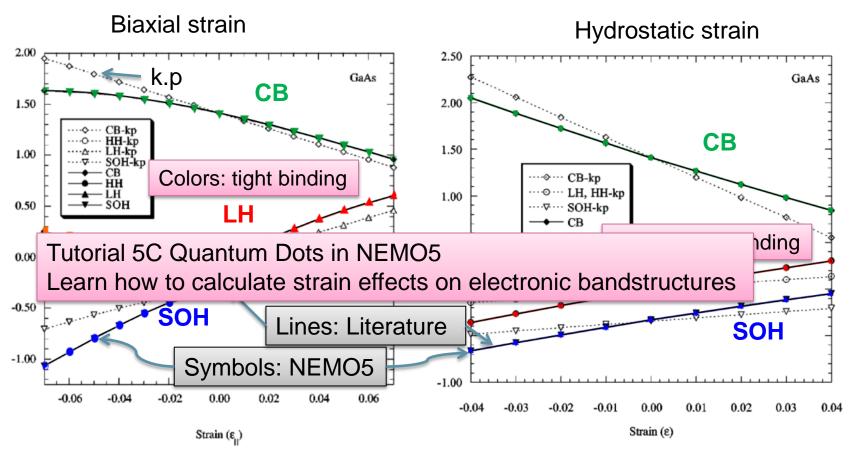

GaAs [111] quantum well

Tutorial 4D – Graphene in NEMO5 Learn how to correctly set up NEMO5 for passivation

GaAs quantum dot


Important: Surface passivation
NEMO 5 has general passivation
scheme

NEMO5: wave functions in quantum dots


NEMO5: InAs quantum dot embedded in GaAs

NEMO5: strain corrections to tight-binding

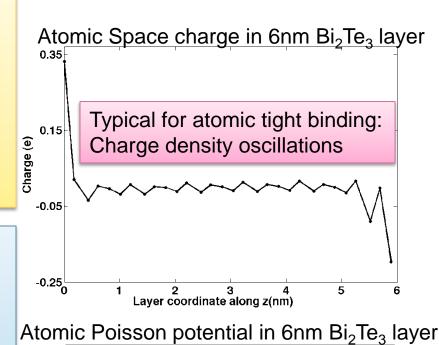
- ✓ External strain definable in input deck (via full epsilon matrix)
- ✓ Strain in TB according to Boykin et al. 2002 implemented and tested
- ✓ Strain in TB according to Boykin et al. 2010 implemented, and tested

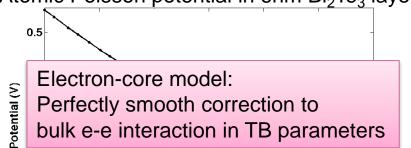
Exact agreement with published data

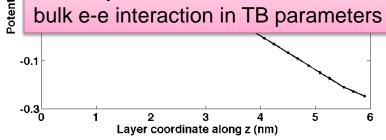
NEMO5: 2 different charge models

Motivation:

Most semiconductor devices allow to distinguish electrons from holes but


Broken-gap nanodevices and topological insulators have no band gap and do not allow to distinguish


NEMO5:


- Charge self-consistent tight-binding Schrödinger/Poisson
- > Standard electron-hole model
- Novel "electron-core" model: All states are electronic
- > Every atom core contains intrinsic ion charge (parameterization and material dependent)

Results of electron-core model:

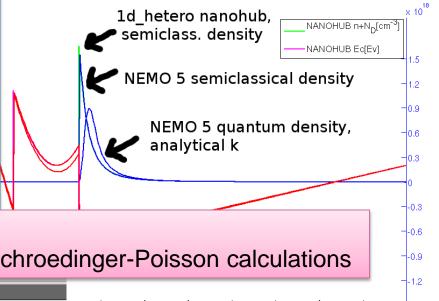
Self-consistent Poisson potential = smooth correction to empirical TB Hamiltonian

NEMO5: Schrödinger-Poisson calculations

60

80

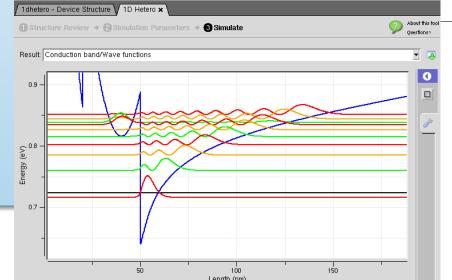
100


 \times [nm]

120

140

Electron-hole example of 1d_hetero nanohub tool


- » semiclassical density
- » quantum density, numerical k-space
- » quantum density, analytical k-space (assuming a parabolic dispersion)

160

180

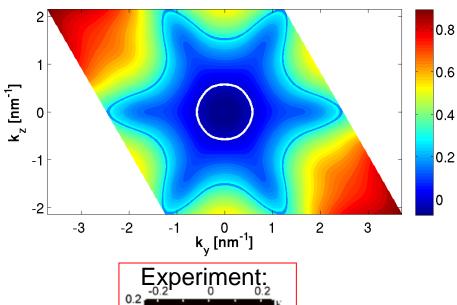
Topological insulators in NEMO5

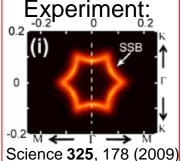
Motivation:

Unique transport features of topological insulators (ballistic surface transport expected)

Question: surface conductance tunable?

Method:


Charge self-consistent tight-binding (sp3d5s*) Schrödinger/Poisson (electroncore model)
Spin analysis and scattering rates


Results:

Agreement with experiment:

- ✓ warping of Fermi surface
- ✓ spin polarized surface states
- ✓ Dirac hyperbolas in thin Bi₂Te₃ layers

NEMO5: Warping of the Fermi surface

Transport capabilities of NEMO5

> Quantum transport models

Nonequilibrium Green's function (NEGF) formalism Open-boundary transfer matrix method ("wavefunction" formalism) Top of the barrier transport model

> Various physical models

Ohmic and Schottky contacts
Simple and fast phonon scattering model
Strain under test
Magnetic field under test

> General simulation structures

1D, 2D, 3D structures

Heterostructures, arbitrary shapes, multiple contacts

➤ 4-level MPI parallelization

bias, energy, momentum, space

Quantum and semi-classical hybrid simulation

NEMO5: Transport in layered Structures

NEGF calculations:

- > time consuming
- > can be charge unstable

GaAs

Se unstable

GaAs

Se unstable

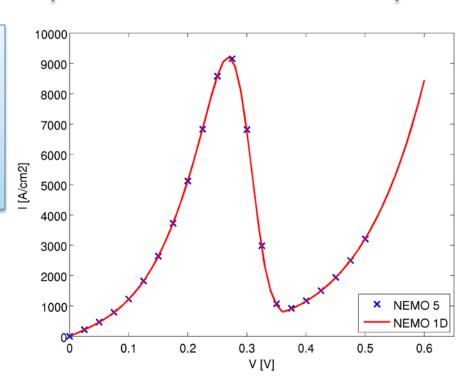
GaAs

1e18cm⁻³

2e15cm⁻³

1e18cm⁻³

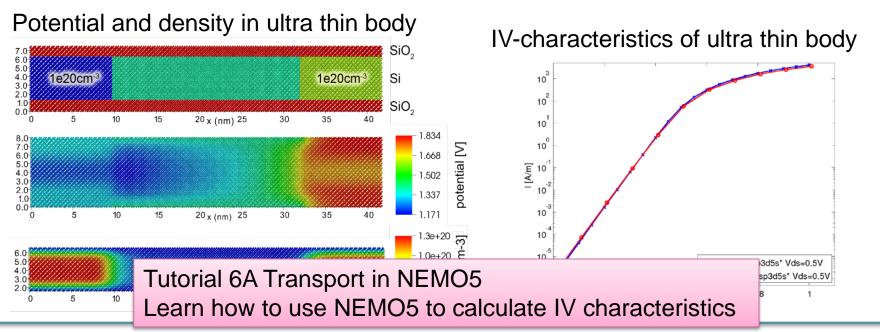
doping

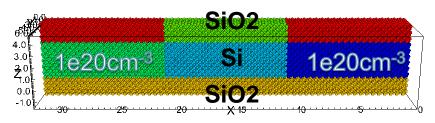

semiclassical

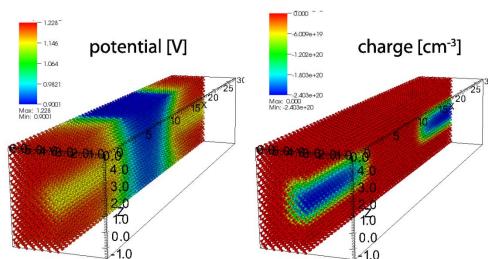
quantum region

semiclassical region

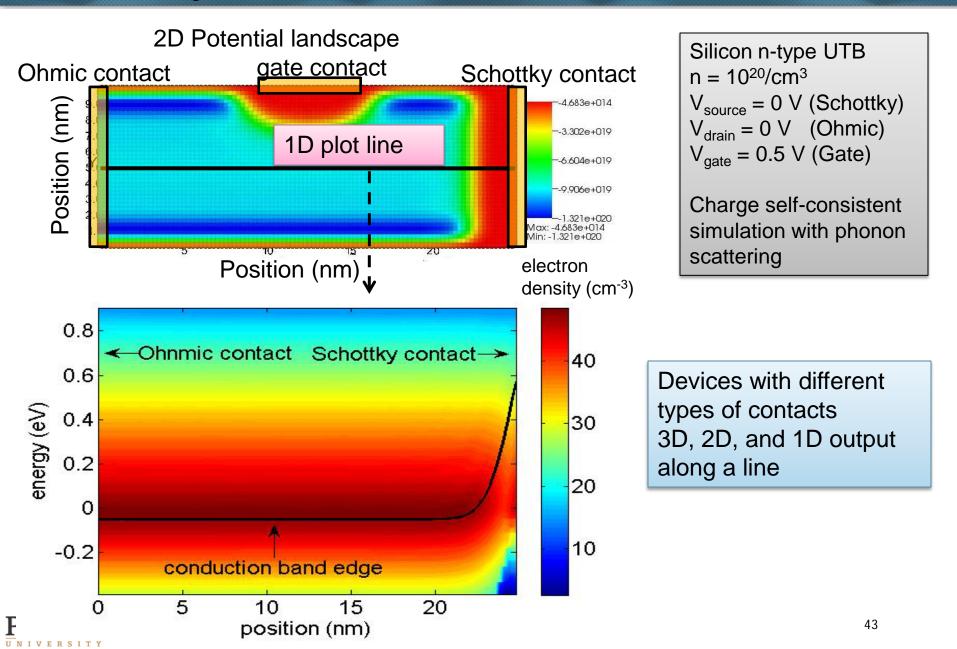
NEMO5: User may...

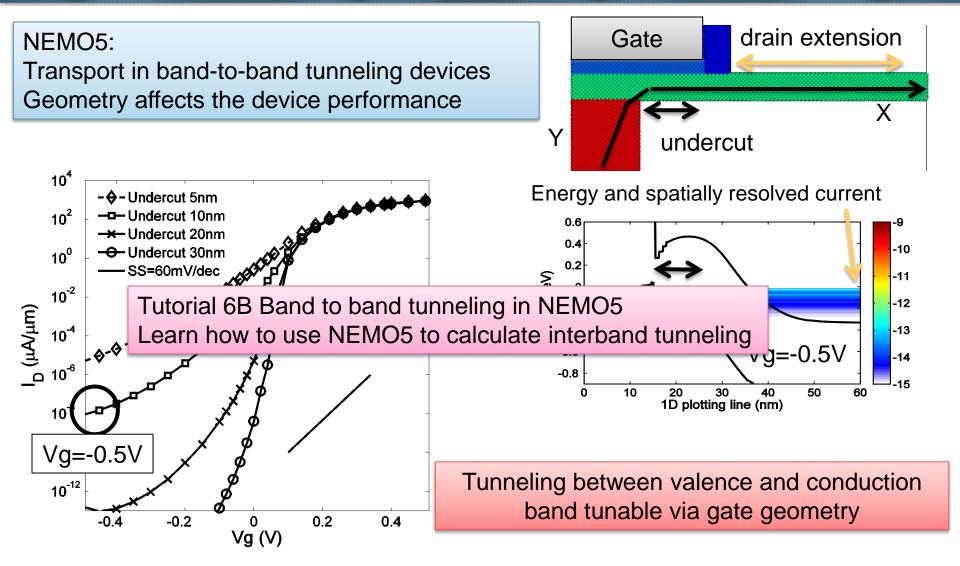

- limit quantum region to relevant device regions
- apply approximations to other device regions





NEMO5: Transport in Nonplanar Structures





NEMO5: Multidimensional graphs

NEMO5: tunneling field effect transistor

NEMO5: features for transport

Electron models: effective mass, 1st and 2nd NN tight binding

Inhomogeneous, self adaptive energy grid

Simplified inelastic scattering on phonons

Under testing:

Transport in strained systems

Nonlocal inelastic scattering

LRA method (efficiency improvement)

Under development/implementation:

Spatial parallelization perpendicular to transport

Phonon transport

NEMO5 origins + history

NEMO5 and atomic representations

NEMO5 solvers + physics

NEMO5 expandability + flexibility

0.8 0.6 0.4 0.2 0 0

NEMO5 on supercomputers (scalability and compatibility)

NEMO5 support (for output and users)

NEMO5 - an expandable code library

"What if I want to implement my own model?"

NEMO5 supports & welcomes that!

Object oriented C++ code:

Encapsulation

Write code without interfering with the rest of NEMO5

Polymorphism & Abstraction

Most NEMO5 code is flexible and handles also new models

Avoid rewriting code "just" because of a new model/crystal structure

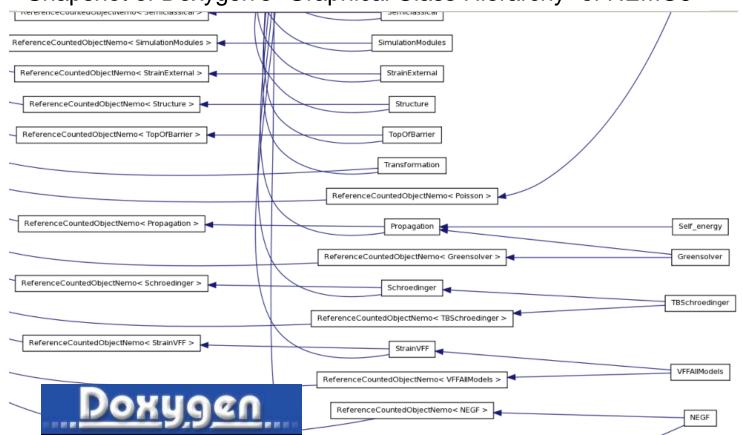
Inheritance

NEMO5 code is written efficiently avoiding "copy&paste"

Zhengping Jiang (Graduate student of Klimeck group):

"Learning NEMO5, implementing and testing a new Hamiltonian took me 2 weeks.

After that, it worked with all NEMO5 features."


NEMO5: Automated documentation with Doxygen

Browsing large source code can be cumbersome (even with Visual Studio or Eclipse)

NEMO5:

NEMO5 code is compatible with Doxygen Doxygen documentation requires only a web browser (NEMO/prototype/doc/html/index.html)

Snapshot of Doxygen's "Graphical Class Hierarchy" of NEMO5

NEMO5: easy prototyping new code in Python

NEMO5?!

"What if I want to quickly test a new idea?"

Prototype in Python:

- Python is linked to NEMO5
 usage with "nemo python_file.py"
 (python_file.py needs to be compatible)
- > The linked Python version supports NumPy and SciPy
- NEMO5 can load Python scripts and Python solvers
- Write python code and embed NEMO5 routines within your Python script (similar to matlab toolbox)

NEMO5 & Python: Python solver

NEMO5 solvers have a common API (to set up, to solve, to communicate, ...) Your own new solvers have to stick to this API

C++ Solver	Python Solver
void MyNewSolver::do_solve()	def do_solve(self):
<pre>void MyNewSolver::do_init(){}</pre>	def do_init (self):
<pre>void MyNewSolver::do_reinit(){}</pre>	def do_reinit (self):
void Simulation::do_output(){}	def do_output (self):
<pre>void MyNewSolver::get_data(string v, type&) get_data(vector<complex<double> >)</complex<double></pre>	<pre>def get_data_type(v) get_data_list_complex()</pre>
<pre>void MyNewSolver::get_data(string v, type1, type2&, .) get_data(unsigned int, vector<double>, .)</double></pre>	<pre>def get_type1_data_type2(v) get_uint_data_list_double (v)</pre>

NEMO5 & Python: Metasolver

```
density_solver = density_solver
potential_solver = potential_solver

contacts = (source_contact, drain_contact)

source_contact = (0.0, 0.0)
drain_contact = (0.0, 0.1)
}
solver
{
   name = density_solver
   type = WF
   domain = device
   active_regions = (1, 2, 3)
```

Standard NEMO5 situation:

Several solve Tutorial 4D Python & NEMO5

Some options Learn how to prototype in Python and use NEMO5 with it

(obsolete for specific tasks)

Some option names are "developer style"

Long and complex inputdeck

```
//Knum = 10

ramper_name = ramper

self_consistent = true

potential criteria = 0 001
```

```
Solvers
{
    solver
    {
        name = Transport
        type = MetaTransport
        transport_type = NEGF
        domain = device
        active_regions = (1, 2, 3)
        output_name = SNWT
        contact_domains = (source_contact, drain_contact) //names
        source_contact_voltages = (0.0, 0.0) //list of voltages
        drain_contact_voltages = (0.0, 0.05) //list of voltage
        use_Poisson_potential = true //if true, Poisson_see
```

Solution: Metasolver

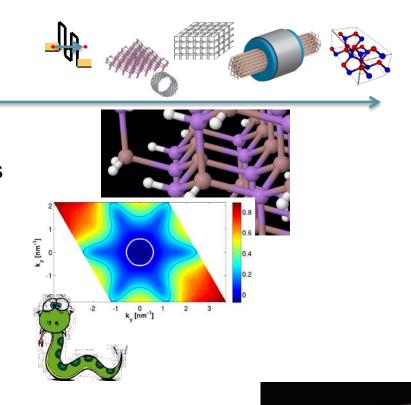
settings in

NEMO5 inputdeck: only relevant options are visible

Option names are convertible

Short inputdeck (1 Solver only)

Globar



NEMO5 origins + history

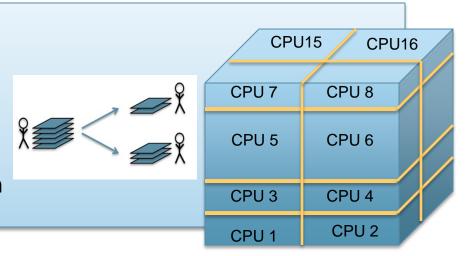
NEMO5 and atomic representations

NEMO5 solvers + physics

NEMO5 expandability + flexibility

NEMO5 on supercomputers (scalability and compatibility)

NEMO5 support (for output and users)

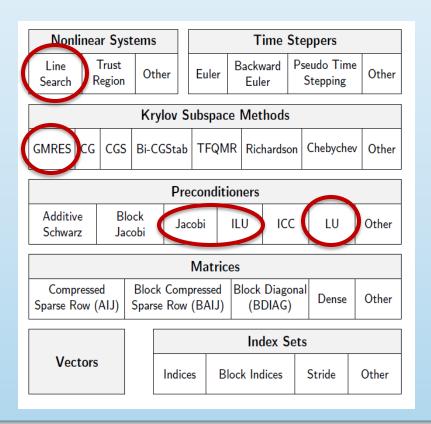


NEMO5: MPI parallelization

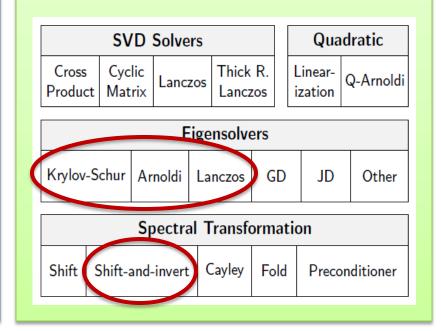
Device calculations are typically very time consuming: 10x10x10 nm Si gives ~ 64k atoms ~ 1.3 million degrees of freedom Many matrix operations scale like $N^2 - N^3$

NEMO5 is MPI parallelized:

- k-space and x-space parallelization for Schrödinger-Poisson
- **x**-space parallelization for Strain
- V, k, E and slab parallelization for NEGF-Poisson and WF-Poisson



within NEMO5: Linear Solvers and Eigensolvers


Linear and Newton solvers: PETSc

- lots of parallel direct & iterative solvers
- interface to LAPACK, MUMPS, SuperLU, HYPRE

Eigensolvers: **SLEPc**

- Uses PETSc for linear solvers, parallelism
- interface to PARPACK (problem in RCAC installation)

MPI status in NEMO5

- Massively parallel numerical solvers implemented
 Externally developed libraries SLEPc, PETSc and Libmesh
- Scaling reached up to 100k CPUs
- Efficient parallel writing of data to disk implemented in NEMO5
- Fast initialization for NEMO5 on up to 100k CPUs

NEMO5:

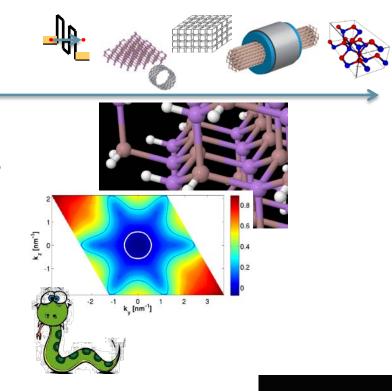
Very good scaling shown up to 100k CPUs

NEMO5: platform compatibility

Architectures where NEMO5 can be compiled and run:

- RCAC machines coates, steele, rossmann, hansen, ... (GCC & Intel)
- Ubuntu (GCC)
- nanoHUB.org workspace (Intel)
- jaguar.ccs.ornl.gov (GCC)
- ranger.tacc.utexas.edu (GCC)
- kraken.ccs.ornl.gov (GCC)
- Your Linux system...

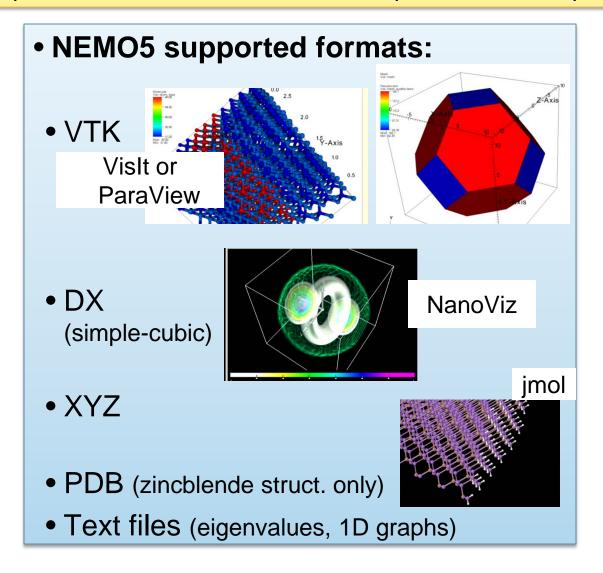
NEMO5 origins + history


NEMO5 and atomic representations

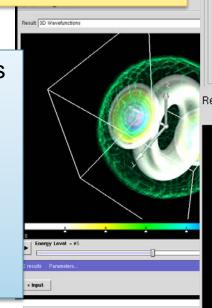
NEMO5 solvers + physics

NEMO5 expandability + flexibility

NEMO5 on supercomputers (scalability and compatibility)


NEMO5 support (for output and users)

Different purposes and visualization software require different output format



NEMO5: on nanoHUB

Specific purposes typically require a small set of options Full flexibility of NEMO5 burdens the fast user

nanoHUB.org offers GUI controlled tools powered by NEMO5:

- Quantum Dot Lab
- 1d Heterostructure Design Tool
- Crystal Viewer
- RTD Simulation with NEGF
- Brillouin Zone Viewer

1d hetero

System

GaAs

GaAs

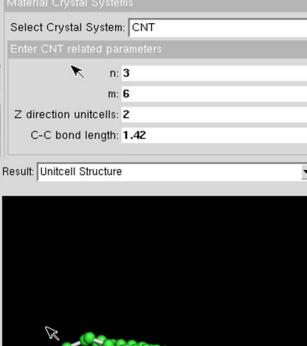
Substr.

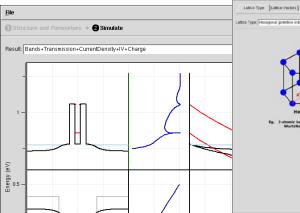
L04 L05 L06 L07 L08

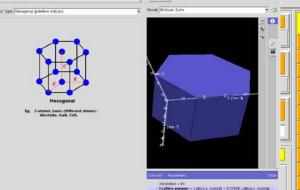
L10

(nm)

1000.06


149.81


(cm-3)


1.e+14

1.e+14

1.e+18 1.e+14

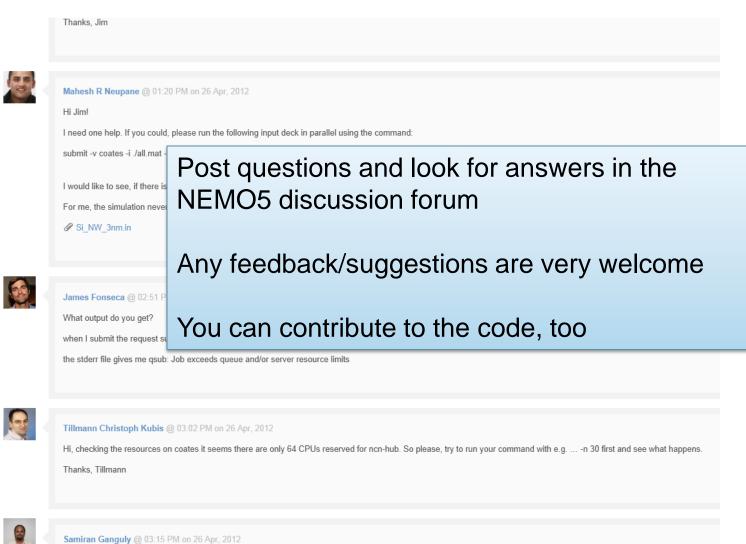
-				
Energy Band Edge (e∀)				
1.5				<u> </u>
1 -				
0.5				
				l,
	#			
¦ '	50 na	100 nometer	150 s	'
Log of Doping Profile (cm-3)				
18 7	*			

35 Klimeck tools:

Systemic Education:

- 22,000 users

>5,700 students, 461 courses


- >820,000 simulations >60 universities

NEMO5: support and discussion forum

NEMO5 distribution and support group on nanohub

Schedule for the NEMO5 tutorial

Device Modeling with NEMO5

10:00 Break

10:30 Lecture 14 (NEMO5 Team): "NEMO5 Introduction"

12:00 LUNCH

1:30 Tutorial 1 (NEMO5 Team): "NEMO5 Technical Overview"

3:00 Break

3:30 Tutorial 2 (NEMO5 Team): "NEMO5 Input and Visualization"

4:30 Tutorial 3 first part (NEMO5 Team): "Models"

5:00 Adjourn

Schedule for the NEMO5 tutorial

Friday, July 20

8:00 Coffee and rolls

8:30 Tutorial 3 second part (NEMO5 Team): "NEMO5 Models"

9:00 Tutorial 4 first part (NEMO5 Team): "Device Simulation – Graphene"

10:00 Break

10:30 Tutorial 4 second part (NEMO5 Team): "Device Simulation – Graphene"

4A Topological Insulators

4B Metals

4C Graphene

4D Python+NEMO5

12:00 LUNCH

1:30 Tutorial 5 (NEMO5 Team): "Device Simulation – Quantum Dots"

5A Quantum Dots Introduction

5B Strain

5C Quantum Dots

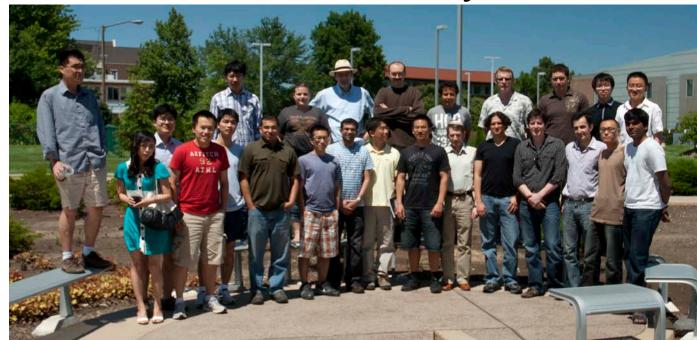
3:00 Break

3:30 Tutorial 6 (NEMO5 Team): "Device Simulation – Transistor"

6A Transport (DG MOSFETs)

5:00 2012 Summer School Adjourns 6B Transport (BTBT)

This time schedule is flexible adjusting to your needs and interests


NEMO5:

Multipurpose, multiscale highly parallelized nanodevice simulation tool Compatible with many external software (both for output and input) Can be used as a tool or as a library

NEMO5 is under constant development Your feedback is very valuable to us!

Sponsors: SRC, GRC, NSF, DARPA, NRI, nanohub.org, Intel, Samsung, Global foundries, IBM, Lockheed Martin

Thank you!

