Projects and Project Guidelines

Lecture 11a

R. Edwin García
redwing@purdue.edu
Dates and Deadlines

- **Mid Term Project:** October 16, 18
 - Will establish viability of a battery design
 - Will lay down the background and literature review of a technology that will be analyzed

- **Final Exam:** NO FINAL

- **Revised (Final) Term Project**
 - Will focus on the design of the selected (mid term) system
 - You can submit your written report any time after this date
 - The final submission deadline is December 6th at 4:30PM
 - Final presentation will occur on December 4th and 6th

- **No classes:** Oct 9, Oct 11, Nov 22
Term Projects

<table>
<thead>
<tr>
<th></th>
<th>anode</th>
<th>cathode</th>
<th>application</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Li</td>
<td>LiC$_6$</td>
<td>high power</td>
</tr>
<tr>
<td></td>
<td>LiMn$_2$O$_4$</td>
<td>LiCoO$_2$</td>
<td>1000 W/kg</td>
</tr>
<tr>
<td></td>
<td>LiV$_2$O$_5$</td>
<td>LiMnO$_2$</td>
<td>high energy</td>
</tr>
<tr>
<td></td>
<td>thin-film</td>
<td></td>
<td>200 Wh/kg</td>
</tr>
<tr>
<td></td>
<td>porous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Project Part A Content Guidelines

Project must include:

• Literature review on selected chemistries
• Ideal capacities
• Discharge curves for 1/10, 1/5, 1, 2, 3, and 4C
• Clear explanation/justification of selected material and microstructure parameters
• Ragone Plot
• Proof that design has a chance of working or Proof that it is impossible to realize with selected chemistry
Project Part A Format Guidelines

• Due Date: ANY time after today
• Part 1 Due Date: October 18
• Research will be completed in groups
• Paper report is individual and must be submitted in actual real cellulose-based paper (for local students)
• Every paper should include a photocopy of the used references
• Wikipedia and other references that are not peer reviewed publications are NOT acceptable
Presentations

Three Components:

• Introduction, literature review
• Analysis: Outline of the optimization process
• Conclusion and limitations of the current approach
• Must present and comment on used material parameters
<table>
<thead>
<tr>
<th>thin-film</th>
<th>thin-film</th>
<th>thin-film</th>
<th>thin-film</th>
<th>thin-film</th>
<th>thin-film</th>
<th>thin-film</th>
<th>thin-film</th>
<th>thin-film</th>
</tr>
</thead>
<tbody>
<tr>
<td>porous</td>
<td>porous</td>
<td>porous</td>
<td>porous</td>
<td>porous</td>
<td>porous</td>
<td>porous</td>
<td>porous</td>
<td>porous</td>
</tr>
<tr>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
</tr>
<tr>
<td>Li</td>
<td>LiC₆</td>
<td>Li</td>
<td>LiC₆</td>
<td>Li</td>
<td>LiC₆</td>
<td>Li</td>
<td>LiC₆</td>
<td>Li</td>
</tr>
<tr>
<td>LiMn₂O₄</td>
<td>LiCoO₂</td>
<td>LiV₂O₅</td>
<td>LiMnO₂</td>
<td>LiMn₂O₄</td>
<td>LiCoO₂</td>
<td>LiV₂O₅</td>
<td>LiMnO₂</td>
<td>LiMn₂O₄</td>
</tr>
</tbody>
</table>