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• The Poisson equation is of the following general form:

It accounts for Coulomb carrier-carrier interactions in the 
Hartree approximation

It is always coupled with some form of transport simulator 
except when equilibrium conditions apply

It has to be frequently solved during the simulation procedure 
to properly account for the fields driving the carriers in the 
transport part

There are numerous ways to numerically solve this equation 
that can be categorized into direct and iterative methods
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Poisson Equation
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• Regarding the grid set-up, there are several points that need to be 
made:

In critical device regions, where the charge density varies 
very rapidly, the mesh spacing has to be smaller than the 
extrinsic Debye length determined from the maximum doping 
concentration in that location of the  device

Cartesian grid is preferred for particle-based simulations

It is always necessary to minimize the number of node points 
to achieve faster convergence

A regular grid (with small mesh aspect ratios) is needed for 
faster convergence
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Since any differential equation can be recast into an integral 
form, we consider the evaluation of the integral of the function
f(x)

using a rectangular rule for numerical integration:

Example for Meshing
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Example for Meshing …
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Mesh size

• From the results shown, we see that for mesh size 1E-3, the error is less 
than 0.1% and the total number of mesh points is 10000.

• Of course, the use of non-uniform meshing, i.e. small mesh spacing 
where the function is varying fast and large mesh spacing where we have 
slow variation of the function we are integrating  can significantly reduce 
the number of mesh points needed for achieving the desired accuracy.
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Example for meshing

The function below is used to generate non-uniform mesh with constant 
mesh aspect ratio r. Input parameters are initial mesh size (X0), total 
number of mesh points (N) and the size of the domain over which we want 
these mesh points distributed (XT).

This is determined by the
maximum doping in the
device in a particular region.
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Boundary Conditions

• There are three types of boundary conditions that 
are specified during the discretization process of the 
Poisson equation:

Dirichlet (this is a boundary condition on the potential)
Neumann (this is a boundary condition on the derivative of 
the potential, i.e. the electric field)
Mixed boundary condition (combination of Dirichlet and 
Neumann boundary conditions)

• Note that when applying the boundary conditions for 
a particular structure of interest, at least one point 
MUST have Dirichlet boundary conditions specified 
on it to get the connection to the real world.
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• The discretization of the Laplasian, appearing on the left-hand 
side of the 1D Poisson equation, leads to a three-point stencil:
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• The resultant finite difference equations can be represented in a 
matrix form Au= f, where:
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• In 2D, the finite-difference discretization of the Poisson equation 
leads to a five point stencil:

N=5,M=4

Dirichlet: 0,4,5,9,10,14,15,19
Neuman: 1,2,3,16,17,18
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2D Discretization
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Dirichlet: 0,4,5,9,10,14,15,19
Neuman: 1,2,3,16,17,18
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2D Discretization, Cont’d
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• The expression for the electric field must account for the 
boundary conditions. A popular scheme for the electric field 
calculation is the centered difference scheme:
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Direct methods
• Gaussian elimination
• LU decomposition method

Iterative methods
• Mesh relaxation methods

- Jacobi
- Gaus-Seidel
- Successive over-relaxation method  (SOR)
- Alternating directions implicit (ADI) method

• Matrix methods
- Thomas tridiagonal form
- Sparse matrix methods:  Stone’s Strongly Implicit Procedure 

(SIP), Incomplete Lower-Upper (ILU) decomposition method
- Conjugate Gradient (CG) methods:  Incomplete Choleski

Conjugate Gradient (ICCG), Bi-CGSTAB
- Multi–Grid (MG) method  

• The variety of methods for solving Poisson equation include:

Solution Methods
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Direct methods

the unknowns can be computed as follows:
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• These methods are based on “triangularization” techniques, 
that are methods to eliminate the unknowns in a systematic 
way, so that one ends up with a triangular system, that can be 
easily solved as follows: given a system Ux=f, where U is 
upper-triangular, 

Direct Methods
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or, more compactly,

Since the unknowns are solved for in a backward order, this 
algorithm is called back substitution.
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Direct Methods, Cont’d
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(A) Gaussian Elimination
step (2): The system resulting from step (1) is a system of (n-
1) equations with (n-1) unknowns, which can be subsequently 
reduced in the same way: eliminate x2 from the last (n-2) 
equations by subtracting from them the multiple                 
of the first equation. This will produce a system of (n-2) 
equations with (n-2) unknowns.
...
step (n-1): We will get the last equation 

Finally, collecting the first equation from each step, we obtain a 
triangular system:
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(B) LU Decomposition
• This method is based on a decomposition of the matrix A into 

a lower- and upper-triangular matrix: A=LU. The system Ax=f 
is then equivalent to LUx=f, which decomposes into two 
triangular sytems Ly=f and Ux=y.

LU-theorem: Let A be a given nxn matrix, and denote Ak by 
the kxk matrix formed by the intersection of the first k rows and 
columns in A. If  det(Ak)!=0,  k=1,2,...,n-1,  then there exist a 
unique lower-triangular matrix L=(mij) with mii=1, i=1,2,...,n 
and a unique upper-triangular matrix U=(uij) so that LU=A. 

NOTE: LU decomposition and Gaussian elimination are 
equivalent, this means that, for any nonsingular matrix A, the 
rows can be reordered so that an LU decomposition exists.

LU Decomposition
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• If LU decomposition exists, then for a tri-diagonal matrix A, 
resulting from the finite-difference discretization of the 1D 
Poisson equation, one can write

where

Then, the solution is found by forward and back substitution:
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• Iterative (or relaxation) methods start with a first approximation 
which is successively improved by the repeated application (i.e.
the “iteration”) of the same algorithm, until a sufficient accuracy 
is obtained.

• In this way, the original approximation is “relaxed” toward the 
exact solution which is numerically more stable.

• Iterative methods are used most often for large sparse system of
equations, and always when a good approximation of the 
solution is known. 

• Error analysis and convergence rate are two crucial aspects of 
the theory of iterative methods.

Iterative methods

Iterative Methods
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• The simple iterative methods for the solution of Ax = f proceed 
in the following manner:

ri = f - Avi

ei = x - vi.

Aei = ri

A sequence of approximations v0,v1,...,vn,..., of x is construc-
ted that converges to x. Let vi be an approximation to x after 
the i-th iteration. One may define the residual

as a computable measure of the deviation of vi from x. Next, 
the algebraic error ei of the approximation vi is defined by

From the previous equations one can see that ei obeys the so-
called residual equation:

Error Equation
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The expansion of  Ax=f  gives the relation

In Jacobi’s method the sequence v0,v1,...,vn,... is computed by 

Note that one does not use the improved values until after a 
complete iteration. The closely related Gauss-Seidel’s method 
solves this problem as follows:
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By a simple modification of Gauss-Seidel’s method it is often 
possible to improve the rate of convergence. Following the 
definition of residual ri = f - Avi, the Gauss-Seidel formula can 
be written i

k
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, where

The iterative method
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k

i
k

i
k rvv ω+=+1

is the so-called successive over-relaxation (SOR) method. Here, ω, 
the relaxation parameter, should be chosen so that the rate of 
convergence is maximized. The rate of convergence of the SOR is 
often surprisingly higher than the one of Gauss-Seidel’s method. The 
value of ω depends on the grid spacing, the geometrical shape of the 
domain, and the type of boundary conditions imposed on it.

SOR Method
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Any  stationary iterative method can be written in the general
form

xk+1 = Bxk + c

A relation between the errors in successive approximation can 
be derived by subtracting the equation x=Bx+c :

xk+1 - x = B(xk - x)=…=Bk+1(x0-x)

Now, let B have eigenvalues λ1,λ2,...,λn, and assume that the 
corresponding eigenvectors u1,u2,...,un are linearly 
independent. Then we can expand the initial error as

x0 - x = αu1 + αu2 +…+αun

• Convergence of the iterative methods:

Convergence
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and thus

This means that the process converges from an arbitrary
approximation if and only if  |λ i|<1, i=1,2,...,n. 

Theorem: A necessary and sufficient condition for a stationary 
iterative method xk+1 = Bxk + c to converge for an arbitrary initial 
approximation x0 is that 

where ρ(B) is called the spectral radius of B. For uniform mesh 
and Dirichlet boundary conditions, one has for the SOR method
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1. pre-smoothing on Ωn

2. restriction of r to Ωn-1

3. solution of Ae=r on Ωn-1

4. prolongation of e to Ωn

5. post-smoothing on Ωn

Multi-grid method

two-grid iteration to solve Av=f on grid Ωn
5.

2.

3.

4.

1.Ωn

Ωn-1

Multi-Grid Method
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• Coarsening techniques: importance of boundaries 

18 points 17 points

When the number of points in one dimension is 2N+2 (N being a 
natural number), a geometric mismatch is generated in the 
coarser grids, which show pronounced in-homogeneity. The 
convergence of the method is severely slowed down in these 
cases.

initial grid

good coarseningbad coarsening

Coarsening Techniques
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initial grid

post-smoothing often 
required on these 
points

propagation of a contact (Neumann BC) through grids

no post-smoothing 
is required

• Coarsening techniques: importance of boundaries

Coarsening Techniques, Cont’d
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Restriction is used to transfer the value of the residual from a grid 
Ωn to a grid Ωn-1; relaxation is then a fine-to-coarse process.
In a two-dimensional scheme is convenient to use two different 
restriction operators, namely the full-weighting and the half-
weighting. In the simple case of a homogeneous, square grid, one 
has: 
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The criteria to choose the most effective scheme in a given 
situation depend on the relaxation method, as will be discussed 
in the section devoted to relaxation.

• Restriction

Restriction
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a
b

The prolongation is used to transfer the computed error from a 
grid Ωn-1 to a grid Ωn. It is a coarse-to-fine process and, in two 
dimensions, can be described as follows (see figure below):

(1) Values on points on the fine grid, 
which correspond to points on the 
coarse one (framed points) are just 
copied.

(2) Values on points of type a are 
linearly interpolated from the two 
closer values on the coarse grid.

(3) Values on points of type b are 
bilinearly interpolated from the four 
closer values on the coarse grid. 

• Prolongation scheme

Prolongation
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As shown by the algorithm description, the final coarsest grid 
has just a few grid-points. A typical grid has 3 up to 5 points per 
axis.

On this grid, usually called Ω0, an exact solution of the basic 
equation Ae = r is required.

The number of grid points is so small on Ω0 that any solver can 
be used without changing the convergence rate in a noticeable 
way.

Typical choices are a direct solver (LU), a SOR, or even a few 
iterations of the error smoothing algorithm.

• The coarsest grid solver

The Coarsest Grid Solver
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The relaxation scheme forms the kernel of the multigrid
method.

Its task is to reduce the short wavelength Fourier components 
of the error on a given grid. 

The efficiency of the relaxation scheme depends sensitively on 
details such as the grid topology and boundary conditions. 
Therefore, there is no single standard relaxation scheme that 
can be applied.

Two Gauss-Seidel schemes, namely point-wise relaxation and 
line relaxation, can be considered. The correct applica-tion of 
one or more relaxation methods can dramatically imp-rove the 
convergence. The point numbering scheme plays also a crucial 
role.

• Relaxation scheme

Relaxation Scheme
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(1) Relaxation scheme: point Gauss-Seidel

The approximation is relaxed (i.e. the error is smoothed) 
on each single point, using the values on the point itself 
and the ones of the neighbors.

This is equivalent to solve a single line of the system Au=f.

Relaxation Scheme, Cont’d
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The approximation is relaxed on a 
complete row (column) of points, 
using the values on the point itself 
and the ones of the other points on 
that row (column). 

Successive rows (columns) are visited using a “zebra” numbering 
scheme.  Different combinations of row/column relaxation can be 
used. 

This technique, which processes more than a point a the same 
time is called block relaxation. This is equivalent to solve an one-
dimensional problem with a direct method, that is to solve a 
tridiagonal problem.

This method is very efficient when points are inhomogeneous in 
one direction.

(2) Relaxation scheme: line Gauss-Seidel

Relaxation Scheme, Cont’d
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(3) Relaxation schemes: Comparison

Comparison of Relaxation Schemes
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Criterion for Convergence

There are several criteria for the convergence of the 
iterative procedure when solving the Poisson 
equation, but the simplest one is that nowhere on the 
mesh the absolute value of the potential update is 
larger than 1E-5 V. 

This criterion has shown to be sufficient for all device 
simulations that have been performed within the 
Computational Electronics community.


