ECE606: Solid State Devices
Lecture 4
Periodic Potentials Solutions of Schroedinger's Equation

Gerhard Klimeck
gekco@purdue.edu
Presentation Outline

- Schrödinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
- $E-k$ diagram and constant energy surfaces
- Conclusions

Reference: Vol. 6, Ch. 3
Getting Back to Crystals

Original Problem

Periodic Structure

Electrons in periodic potential: Problem we want to solve
Reminder Transmission through Repeated wells

2 barriers => 1 resonance

3 barriers => 2 resonance

n barriers => n-1 resonance

As the number of barriers are increased more and more energy resonances begin to appear and energy bands are formed.
As the number of barriers is increased, the electrons see no difference between the actual structure and a structure that is simply modeled as being repeated indefinitely (Periodic).
Finally an (almost) Real Problem ...

\[\psi_{n+1} = A_{n+1} \sin kx + B_{n+1} \cos kx \]

\[\psi_n = C_n e^{\alpha x} + D_n e^{-\alpha x} \]

But \(N \) atoms have two \(2N \) unknown constants to find For large \(N \), isn’t there a better way ?
Four Steps of Finding Energy Levels for Closed Systems

1) \[\frac{d^2 \psi}{dx^2} + k^2 \psi = 0 \]

2) \[\psi(x = -\infty) = 0 \]
 \[\psi(x = +\infty) = 0 \]

3) \[\psi|_{x=x_B^-} = \psi|_{x=x_B^+} \]
 \[\frac{d\psi}{dx}|_{x=x_B^-} = \frac{d\psi}{dx}|_{x=x_B^+} \]

4) \[\text{Det(coefficient matrix)} = 0 \]

Set 2N-2 equations for 2N-2 unknowns

Imposed Boundary Conditions

N is very large for crystal, but changing steps 2 and 3 a little bit we can still solve the problem in a few minutes.
Presentation Outline

• Schrodinger equation in periodic U(x)
• Bloch theorem
• Band structure
• Properties of electronic bands
• E-k diagram and constant energy surfaces
• Conclusions

Reference: Vol. 6, Ch. 3
\[|\psi(x)|^2 = |\psi(x+p)|^2 \quad \iff \quad \psi(x+p) = \psi(x)e^{ikL} \]
Phase-factor for N-cells

\[\psi(x) \]

\[\psi(x + L) \]

\[\psi(x + 2L) \]

\[\psi(x + NL) \]

\[\psi[x + L] = \psi(x)e^{ikL} \]

\[\psi[x + 2L] = \psi(x + L)e^{ikL} \]

\[= \psi(x)e^{ikL \times 2} \]

\[\psi[x + NL] = \psi(x)e^{ikLN} \]
Step 2: Periodic Boundary Condition

$$\psi[x + NL] = \psi(x) e^{ikLN}$$

$$e^{ikLN} = 1 \equiv e^{\pm i2\pi n}$$

$$k = \pm \frac{2\pi n}{NL} \quad n = -\frac{N}{2}, \ldots, -1, 0, 1, \ldots, \frac{N}{2}$$

$$k_{\text{max}} = \frac{\pi}{L}, \quad k_{\text{min}} = -\frac{\pi}{L}$$
Step 3: Boundary Conditions

\[\psi_{x=0^-} = \psi_{x=0^+} \]
\[\frac{d\psi}{dx}_{x=0^-} = \frac{d\psi}{dx}_{x=0^+} \]

\[B_a = B_b \]
\[\alpha A_a = \beta A_b \]

\[\psi_a|_{x=a} = \psi_b|_{x=-b} e^{ikL} \]
\[\frac{d\psi_a}{dx}_{x=a} = \frac{d\psi_b}{dx}_{x=-b} e^{ikL} \]

\[\beta \equiv i\sqrt{2m(U_0 - E)/\hbar^2} \]
\[\alpha \equiv \sqrt{2mE/\hbar^2} \]

\[\psi_a = A_a \sin \alpha x + B_a \cos \alpha x \]
\[\psi_b = A_b \sin \beta x + B_b \cos \beta x \]

\[A_a \sin \alpha a + B_a \cos \alpha a = e^{ik(a+b)}[-A_b \sin \beta b + B_b \cos \beta b] \]
\[\alpha A_a \sin \alpha a - \alpha B_a \cos \alpha a = e^{ik(a+b)}[\beta A_b \sin \beta b + \beta B_b \cos \beta b] \]
Step 4: Det(matrix) = 0 for Energy-levels

\[B_a = B_b \]
\[\alpha A_a = \beta A_b \]

\[A_a \sin \alpha a + B_a \cos \alpha a = e^{ik(a+b)} [-A_b \sin \beta b + B_b \cos \beta b] \]
\[\alpha A_a \sin \alpha a - \alpha B_a \cos \alpha a = e^{ik(a+b)} [eta A_b \sin \beta b + \beta B_b \cos \beta b] \]

\[\frac{1 - 2\xi}{2\xi\sqrt{1 - \xi}} \times \ldots = \cos kL \quad \xi \equiv \frac{E}{U_0} \quad \alpha_0 \equiv \sqrt{\frac{2mU_0}{\hbar^2}} \]
Presentation Outline

- Schrödinger equation in periodic $U(x)$
- Bloch theorem
- Band structure
- Properties of electronic bands
- $E-k$ diagram and constant energy surfaces
- Conclusions

Reference: Vol. 6, Ch. 3
Graphical solution to Energy Levels

\[
\frac{1-2\xi}{2\xi\sqrt{1-\xi}} \times \cos kL
\]

\[
k = \pm \frac{2\pi n}{NL} \quad n = -\frac{N}{2}, \ldots, -1, 0, 1, \ldots, \frac{N}{2}
\]

Right Hand side is a set of N flat lines between -1 and 1
Left Hand side is an oscillatory function with damping

\(\zeta = \frac{E}{U}\)
\[\zeta = \frac{E}{U} \]

\[k = 2\pi/NL \]

\[k = 0 \]
Brillouin Zone and Number of States

\[k = \pm \frac{2\pi n}{NL} \quad n = -\frac{N}{2}, -1, 0, 1, \ldots, \frac{N}{2} \]

\[\Delta k = \frac{2\pi}{NL} \]

4 states per atom, N atoms

\Rightarrow 4 \text{ bands, } N \text{ states in each band}
A GaAs structure with 6nm wells, 2nm barriers and 0.4eV barrier height is modeled as follows,
- PPL-Periodic structure repeated indefinitely.
- TB: 30 barriers using tight-binding.
- TM: 30 barriers using transfer matrices.

It can be seen that the results of these three approaches agree well.
A GaAs structure with 6nm wells, 2nm barriers and 0.4eV barrier height is modeled as follows,
- PPL-Periodic structure repeated indefinitely.
- TB: 80 barriers using tight-binding.
- TM: 80 barriers using transfer matrices.

It can be seen that the results of these three approaches agree well.
An InAs structure with 6nm wells, 2nm barriers and 0.4eV barrier height is modeled as follows,
- PPL-Periodic structure repeated indefinitely.
- TB: 30 barriers using tight-binding.
- TM: 30 barriers using transfer matrices.

It can be seen that the results of these three approaches agree well.
Finite superlattice with large number of repeated cells approaches the periodic potential model
Presentation Outline

• Schrödinger equation in periodic $U(x)$
• Bloch theorem
• Band structure
• Properties of electronic bands
• E-k diagram and constant energy surfaces
• Conclusions

Reference: Vol. 6, Ch. 3
Wave Packet and Group Velocity

\[\psi(x, t) = Ae^{ikx - \frac{E}{\hbar}t} + Ae^{i(k+\Delta k)x - i\left(\frac{E+\Delta E}{\hbar}\right)t} \]

\[= Ae^{ikx - \frac{E}{\hbar}t} \left[1 + e^{i(\Delta k)x - i\left(\frac{\Delta E}{\hbar}\right)t} \right] \]
\[\psi(x,t) = Ae^{\frac{ikx - ite^E}{\hbar}} \left[1 + e^{i(\Delta k)x - i\frac{\Delta E}{\hbar}t} \right] = Ae^{\frac{ikx - ite^E}{\hbar}} \left[1 + e^{ix \times \text{const.}} \right] \]

Group Velocity for a Given Band

\[\left[x\Delta k - t \frac{\Delta E}{\hbar} \right] = \text{constant.} \]

\[\frac{d}{dt}\left[x\Delta k - t \frac{\Delta E}{\hbar} \right] = \frac{d}{dt}(\text{constant}) \]

\[\frac{dx}{dt} \frac{\Delta k}{\hbar} - \frac{\Delta E}{\hbar} = 0 \rightarrow \frac{dx}{dt} = \frac{1}{\hbar} \frac{\Delta E}{\Delta k} \]

\[\nu = \frac{dx}{dt} = \frac{1}{\hbar} \frac{dE}{dk} \]

\[a = \frac{d\nu}{dt} = \frac{1}{\hbar} \frac{d}{dt} \left[\frac{dE}{dk} \right] = \frac{1}{\hbar} \frac{d}{dt} \left[\frac{dE}{dk} \right] \left[1 \right] = \frac{1}{\hbar} \frac{d}{dt} \left[\frac{dE}{dk} \right] \left[\frac{1}{\hbar} \frac{d(\hbar k)}{dk} \right] \]

\[a = \frac{1}{\hbar^2} \frac{d^2E}{dk^2} \frac{d(\hbar k)}{dt} = \frac{1}{\hbar^2} \frac{d^2E}{dk^2} \frac{dp}{dt} = \frac{1}{m^*} F \]

\[m^* = \left[\frac{1}{\hbar^2} \frac{d^2E}{dk^2} \right]^{-1} \]
Effective Mass for a Given Band

\[\nu = \frac{1}{\hbar} \frac{\Delta E}{\Delta k} \]

\[\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2E}{dk^2} \]

mass for each band

mass changes throughout the band
Effective Mass is not Essential ...

\[\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2E}{dk^2} \]

Mass appears to be ill-defined

Integral description of the momentum and position change of wavepackets

Do not need effective mass

=> Effective mass is not a critical physical property!

=> Graphene is a material with such linear dispersion!
Electron and Hole fluxes: Filled/Empty Bands

Need
- inversion symmetry (number of states in +/-k identical)
- Pauli exclusion principle

\[J_3 = -\frac{q}{L} \sum_{i} \nu_i = 0 \]
Empty bands carry no current

\[J_2 = -\frac{q}{L} \sum_{i} \nu_i = -\frac{q}{L} \sum_{0}^{k_{max}} \nu_i - \frac{q}{L} \sum_{-k_{min}}^{0} |\nu_i| = 0 \]
Full bands carry no current
Partially filled bands

Partial filling can be achieved by:
- Optical excitation
- Thermal excitation
- Doping + a little thermal excitation

Empty bands carry no current
Full bands carry no current

Let’s imagine there is a way to get some electrons from the valence band into the conduction band!
\[J_3 = -\frac{q}{L} \sum_{i(\text{filled})} \nu_i \neq 0 \]

\[J_2 = -\frac{q}{L} \sum_{i(\text{filled})} \nu_i = -\frac{q}{L} \sum_{\text{all}} \nu_i + \frac{q}{L} \sum_{i(\text{empty})} |\nu_i| \]

\[= \frac{q}{L} \sum_{i(\text{empty})} |\nu_i| \]

-ve charge moving with –ve mass
+ve charge moving with +ve mass

Shockley example – top view of parking lot
Interpretation of the effective mass?

- m^* not free mass
- m^* function of k
- Negative and positive (in the same band!)

But for Transport:
- Some bands are more important than others
- Some are always full
- Some are always empty

Minimizing energy:
- Electrons “fall” to the bottom
- Holes “float” to the top

“Constant” Masses at:
- Bottom conduction band
- Top valence band
Presentation Outline

• Schrödinger equation in periodic U(x)
• Bloch theorem
• Band structure
• Properties of electronic bands
• E-k diagram and constant energy surfaces
• Conclusions

Reference: Vol. 6, Ch. 3
Invaraint to shift by

\[1 = e^{im2\pi} = e^{imkL} \]

4 states per atom, N atoms

=> 4 bands, N states in each band

All states are included in the first zone

Invariant to shift by
Solution Space: Brillouin Zone

4 states per atom, N atoms
=> 4 bands, N states in each band
All states are included in the first zone
Invariant to shift by
Collapse of an infinite space into a discrete space

\[1 = e^{im2\pi} = e^{imkL} \]
Fourier Transform Reminders

\[f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\omega x} \, dx \]

- \(e^{-a|x|} \)
 \[\sqrt{\frac{2}{\pi}} \cdot \frac{a}{a^2 + \omega^2} \]
 \[\frac{1}{\sqrt{2\alpha}} \cdot e^{-\frac{\omega^2}{4\alpha}} \]

- \(\text{rect}(ax) \)
 \[\frac{1}{\sqrt{2\pi a^2}} \cdot \text{sinc} \left(\frac{\omega}{2\pi a} \right) \]

- \(\text{tri}(ax) \)
 \[\frac{1}{\sqrt{2\pi a^2}} \cdot \text{sinc}^2 \left(\frac{\omega}{2\pi a} \right) \]

- \(e^{iax} \)
 \[\sqrt{2\pi} \cdot \delta(\omega) \]
 \[\sqrt{2\pi} \cdot \delta(\omega - a) \]

- \(\cos(ax) \)
 \[\sqrt{2\pi} \cdot \frac{\delta(\omega - a) + \delta(\omega + a)}{2} \]

Space Mapping

- Infinite \(\leftrightarrow\) Infinite

Periodic \(\Rightarrow\) Discrete
A 1D periodic function: \(f(x) = f(x + l); \ l = nL \) can be expanded in a Fourier series:

\[
f(x) = \sum_n A_n e^{i2\pi nx/L} = \sum_g A_g e^{igx} \quad g = \frac{2\pi n}{L}
\]

The Fourier components are defined on a discrete set of periodically arranged points (analogy: frequencies) in a reciprocal space to coordinate space.

3D Generalization:

\[
u_n(k, r) = \sum_G f_G^n(k) e^{iG \cdot r}; \quad G = h\mathbf{b}_1 + k\mathbf{b}_2 + l\mathbf{b}_3
\]

\(G \perp a \) Where \(hkl \) are integers. \(G=\)Reciprocal lattice vector
1) Define reciprocal lattice with the following vectors

\[k_x = 2\pi \frac{b \times c}{|a \cdot b \times c|} \quad k_y = 2\pi \frac{c \times a}{|a \cdot b \times c|} \quad k_z = 2\pi \frac{a \times b}{|a \cdot b \times c|} \]

2) Use Wigner Seitz algorithm to find the unit cell in the wave-vector (reciprocal) space.

Fourier transform: Represented real-space with plane waves
Impose periodicity in \(\mathbf{R} \)

Reciprocal vector \(\mathbf{G} \)

\[\mathbf{k} = \mathbf{G} = h\mathbf{k}_x + k\mathbf{k}_y + l\mathbf{k}_z \]
Primitive cell in real space

\[k_x = 2\pi \frac{b \times \hat{z}}{|a \cdot b \times \hat{z}|} \quad k_y = 2\pi \frac{\hat{z} \times a}{|a \cdot b \times \hat{z}|} \]
Brillouin Zone for One-dimensional Solids

Real-space

1st B-Z

E-k diagram

Replacing $(a+b)$ by L ...
E-k diagram in 2D solids

Real-space

1st B-Z

E-k diagram
1st B-Z

E-k diagram

Const. Energy Surface

E

k_x

k_y

k_y

k_x

k_1

E_1

\frac{\pi}{b}

\frac{\pi}{a}

\frac{\pi}{b}

\frac{\pi}{a}

\frac{\pi}{a}

\frac{\pi}{a}
Conclusions

- Solution of Schrodinger equation is relatively easy for systems with well-defined periodicity.
- Electrons can only sit in specific energy bands. Effective masses and band gaps summarize information about possible electronic states.
- Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined.
- Kronig-Penney model is analytically solvable. Real band-structures are solved on computer. Such solutions are relatively easy – we will do HW problems on nanohub.org on this topic.
- Effective mass is not a fundamental concept. There are systems for which effective mass can not be defined.
- Of all the possible bands, only a few contribute to conduction. These are often called conduction and valence bands.
- For 2D/3D systems, energy-bands are often difficult to visualize. E-k diagrams along specific direction and constant energy surfaces for specific bands summarize such information.
- Most of the practical problems can only be analyzed by numerical solution.