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Boolean Algebra (a.k.a. Boolean Logic) 

• A family of operations on a set of two symbols or values ({0,1} 
or {TRUE,FALSE}, or …) that obey certain laws 

• Basic Operations 
– Conjunction / AND : x ∧ y 
– Disjunction / OR : x ∨ y 
– Negation / Complement / NOT : ¬ x 

• Complex operations: Any formula that can be composed of basic 
operations 
– Exclusive OR / XOR : x ⊕ y 
– Implication : x → y 

• Operations obey certain laws or axioms 
• Analogy to the algebra of real numbers 

– (B, ∨, ∧, ¬, 0, 1) ↔ (ℝ, +, *, -, 0, 1)  
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Boolean Operators as Set Operations 

• The operators of Boolean algebra can 
also be interpreted in terms of sets 
 Boolean operators 

Set interpretation 
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Basic Laws of Boolean Algebra 
Law Description 
Commutativity x ∨ y = y ∨ x 

x ∧ y = y ∧ x 
Associativity x ∨ (y ∨ z) = (x ∨ y) ∨ z 

x ∧ (y ∧ z) = (x ∧ y) ∧ z 
Distributivity x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) 
Identity x ∨ 0 = x 

x ∧ 1 = x 
Annihilation x ∧ 0 = 0 

x ∨ 1 = 1 
Idempotence x ∨ x = x 

x ∧ x = x 
Absorption x ∧ (x ∨ y) = x 

x ∨ (x ∧ y) = x 
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Basic Laws of Boolean Algebra 

Law Description 
Complementation x ∧ ¬x = 0 

x ∨ ¬x = 1 
Double Negation ¬¬x = x 
De Morgan (¬x) ∧ (¬y) = ¬(x ∨ y) 

(¬x) ∨ (¬y) = ¬(x ∧ y) 

• Duality principle 
― Boolean algebra is unchanged when 0,1 and ∧, ∨ are 

interchanged 
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Did You Know? 
• Boolean logic was the invention of George 

Boole (1815-1864), an English mathematician 
and philosopher 

• Published his first paper at the age of 24 
• Landmark papers 

– “The mathematical analysis of logic”, published 
in 1847. 

– “An Investigation of the Laws of Thought, on 
Which Are Founded the Mathematical Theories 
of Logic and Probabilities”, published in 1854 

• Argued that there was a strong analogy 
between logic (then considered a discipline of 
philosophy) and mathematics 

• Initially, his theory was ignored or criticized by 
the academic community 

• Followed up later by a young student at MIT –
for his M.S thesis in 1937 

– Showed how to use Boolean logic to optimize 
electromechanical relay networks 

 

 
• Boole's life was tragically cut 

short when he died at the 
age of 49, at the peak of his 
intellectual abilities 
 

• After walking 2 miles 
through a drenching rain to 
get to class and then 
lecturing in wet clothes, 
Boole caught a ‘feverish 
cold’ 
 

• Boole was put to bed by his 
wife, Mary Everest Boole, 
who dumped buckets of 
water on him based on the 
theory that the remedy for 
an illness ought to bear 
resemblance to its cause 
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That was easy … what else? 

• Quite a bit! 
– Boolean functions 
– Operations on Boolean functions 
– Representation of Boolean functions 
– Co-factors and their applications 
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Boolean Spaces 

• Boolean space 
of n variables 
is the set of all 
possible 
values that 
the variables 
can assume 

• Can be 
represented as 
an n-
dimensional 
unit 
hypercube 

B1 = {0,1} 

B2 = B x B = 
{00,01,10,11} 

Karnaugh Maps Boolean Hypercubes 

B3 

B4 

Boolean 
space 
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Boolean Functions 

• Boolean function 
– f(x): Bn → B 

• x = x1, x2, …xn are variables 
– xi ∈ B 

• On-set of f 
– {x | f(x) = 1} = f1 = f -1(1) 

• Off-set of f  
– {x | f(x) = 0} = f0 = f -1(0) 

• Boolean functions are also 
called Logic functions 

x2 

x1 

Example: f(x): B2 → B 
 

On-set : {01, 10} 
Off-set: {00, 11} 

0 1 
1 0 

x2 

x1 

0 
1 
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Boolean Functions (contd.) 

• If f1 = Bn, i.e., f(x) = 1, f is a tautology 
• If f0 = Bn, i.e., f(x) = 0, f is not satisfiable 
• If f(x) = g(x) for all x ∈ Bn, then f and g are 

equivalent 
 
 

• Question: How many distinct logic 
functions of n variables exist? 
– Hint: Think of how many ways you 
   can color the vertices of a Boolean 
 cube with two colors 

x1 
x2 

x3 
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The Set of Boolean Functions 

• There are 2n vertices in input space Bn 

→ 22n
 distinct logic functions.  

– Assigning each distinct subset of vertices 
as the on-set results in a distinct logic 
function  f1 ⊆ Bn 

 x1x2x3 f 
0 0 0     1 
0 0 1     0 
0 1 0     1 
0 1 1     0 
1 0 0   1 
1 0 1     0 
1 1 0     1 
1 1 1     0 

x1 
x2 

x3 
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The Set of Boolean Functions 
• Another way to think about 

Boolean functions 
– Compose them using simple 

functions and operators 

• Simple functions 
– Constant functions (f = 0, f = 1) 
– Literals 

• A literal is a variable ( x1 ) or its 
complement ( x1’ ) 

• Literal x1 represents the logic function  
f  = {x| x1 = 1} 

• Literal x1’ represents the logic function 
g  = {x| x1 = 0} 

x1 

x3 
x2 

f = x1 

x1 
x2 

x3 

g = x1’ 

Notation:  x1’ = x1 

13 



ECE 595Z: Digital Logic Systems Design Automation, Spring 2012 

Operations on Boolean Functions 

Given two Boolean functions: 
  f :  Bn → B 
  g : Bn → B  
 
•  AND operation 
   f ⋅ g = {x | f(x)=1 ∧ g(x)=1} 
 
• The OR operation  
  f + g = {x | f(x)=1 ∨ g(x)=1} 
 
• The COMPLEMENT operation  (f’ ) 
   f’ = {x | f(x) = 0} 

 

Interpretation in terms of 
on-set and off-set? 
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The Algebra of Boolean Functions 

• The set of all Boolean Functions 
together with the operations on them 
also satisfy the laws of Boolean 
Algebra 
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Representations of Boolean Functions 

• Truth Table 
• Hypercube 
• Boolean Formula 

– Sum of Products (SOP), Disjunctive Normal 
Form (DNF), List of Cubes 

– Product of Sums, Conjunctive Normal Form 
(CNF), List of Conjuncts 

• Network (graph) of Boolean primitives 
• Binary Decision Tree, Binary Decision 

Diagram (BDD) 
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Representations of Boolean Functions 

• Important questions to ask of any 
representation 
– Scalable (can represent large functions)? 
– Canonical? 

• If two functions are the same, then their 
representations are isomorphic (identical) 

– Efficient to manipulate? 
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Truth Table 

• Truth table of a function f : 
Bn → B is a tabulation of its 
values at each of the 2n 
vertices of Bn 

• The truth table 
representation is 
+ Canonical 
- Intractable for large n 

Example: 
a b c f 
0 0 0 0 
0 0 1 0 
0 1 0  0 
0 1 1 1 
1 0 0  1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

a 
b 

c 

f = b c + a b’ c’ 
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Boolean Formula 

• Boolean functions can be 
represented by formulae 
defined as well-formed 
sequences of 
– Literals:  x1, x1’ 
– Boolean operators:  + (OR), . (AND), 

’ (NOT) 
• NOT: f’ = h such that h1 = f0 

• AND:  (f AND g) = h such that h1 = {x | 
f(x) = 1 and g(x) = 1} 

• OR:  (f OR g) = h such that h1 = {x | f(x) = 
1 or g(x) = 1} 

– Parentheses: (   ) 
 

Examples: 
f = x1.x2’ + x1’.x2 
       = (x1 + x2).(x1’ + x2’) 
h = x1 + x2.x3 
       = (x1’.(x2’ + x3’))’ 

Notation: Often the “.” 
for AND is replaced by 
concatenation 
e.g., x1x2 + x3 
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Question 

• How many Boolean formulae can be 
constructed with n variables? 

 
• How does this compare with the 

number of unique Boolean functions 
in n variables? 
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Cubes 

• A cube (a.k.a. product term) is the 
conjunction (AND) of a set of literals 
– Also, a collection of vertices that forms a 

hypercube of lower dimension  

• If C ⊆ Bn, and C has k literals, then 
|C| covers  2n-k vertices 

• In an n-dimensional Boolean space 
Bn, a cube with n literals is called a 
minterm 

• If a cube C ⊆ f1 (f is a Boolean 
function), then C is an implicant of f 

x1 
x2 

x3 

c = x1’x2x3’ 

x1 
x2 

x3 

c = x1’ 

x1 
x2 

x3 

c= x1’x2 
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Sum of Products 
Sum of Products (SOP) 
• Any Boolean function can be represented by a 

sum of products 
   f = ab + ac + bc 
 
• Can also be thought of as a set of cubes 
   F = {ab, ac, bc}  

 
• A set of cubes that correctly represents f is 

called a cover of f.  
• A function may have several different SOP 

representations or covers 
• Example: 
 F1={ab, ac, bc}    and 
 F2={abc, a’bc, ab’c, abc’} 
 are possible covers of the Boolean function       
   f = ab + ac + bc 
 

a 
b 

c 

•  Each on-set 
vertex should be 
covered by at 
least one cube. 

•  No cube should 
cover any off-set 
vertex.  

Properties of a cover 

22 



ECE 595Z: Digital Logic Systems Design Automation, Spring 2012 

SOP : Minterm Canonical Form 

• A Sum of Products 
representation for a 
function where each 
product is a minterm 
– For a function of n 

variables, each product 
has n literals representing 
all n variables 

Example: 
a b c f 
0 0 0 0 
0 0 1 0 
0 1 0  0 
0 1 1 1 
1 0 0  1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Minterm canonical form: 
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Product of Sums 
• Product (conjunction) of 

terms, each of which is a 
sum (disjunction) of 
literals 
– E.g., f = (a + b + c)(a + b + c’) 

(a’ + b + c’)(a’ + b’ + c) 

• One-to-one transformation 
from SOP representation 
for f to POS representation 
for f’ (complement of f) 
– Follows from De Morgan’s 

law 

• From truth table, use off-
set to construct POS 
representation 
 

   

Example: 
a b c f 
0 0 0 0 
0 0 1 0 
0 1 0  0 
0 1 1 1 
1 0 0  1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

POS representation: 
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Binary Decision Tree 

• Represent the 
function as a 
decision tree 

• At each node, pick 
a variable and 
branch based on 
it’s value 

• Leaves of the tree 
contain constants 
(0,1) 

a 

Example: 
a b c f 
0 0 0 0 
0 0 1 0 
0 1 0  0 
0 1 1 1 
1 0 0  1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Binary Decision Tree: 
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Binary Decision Diagram (BDD) 

• Binary Decision Tree 
has large number of 
nodes 

• Key idea: Share sub-
trees and eliminate 
redundancy to 
reduce size 

• More about BDDs 
later in the class 

a 

Example: 
a b c f 
0 0 0 0 
0 0 1 0 
0 1 0  0 
0 1 1 1 
1 0 0  1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Binary Decision Diagram: 

c 

b b 

a 

0 1 

0 
1 
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Converting Between Boolean Function 
Representations 

• All of the previously 
described 
representations are 
functionally equivalent 

• Vary in their complexity 
(size), and ease of 
performing various 
operations 

• Simple algorithms exist 
to convert from one form 
to another 

Truth 
Table 

SOP 

POS 

Boolean 
Hypercube 

Binary 
Decision 
Diagram 

Boolean 
Network 
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Conversion : Example #1 

• How do you convert a general Boolean 
network (multi-level circuit) into SOP 
form? 
– Quick-and-dirty (exhaustive) algorithm 

 
 
 
 
 
 

– Works, but guaranteed to be exponential in the 
number of inputs 

• There should be a better algorithm! 

For each input vector (00…0 to 11…1) { 
Simulate the circuit; 
If (output == 1) { 

encode input vector as minterm; 
} 

} 
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Conversion : Example #1 
a 

b 
c 

d 

e 
f 

g 

h 

i 

j 

k 
l 

m 

n 

o 

p 

q 

r 

s u 

t 

v 

w 

Notice the similarity to circuit simulation? 
Only difference is, we are propagating 
Boolean expressions, not 0/1 values. 
This is called Symbolic Simulation 

• j = (ab)’ = a’ + b’ 
• k = c’ 
• l = d’ 
• m = e’ + f’ 
• n = j’ + k’ = (a’+b’)’ + (c’)’ = ab + 

c 
• o = m’ = ef 
• p = n’ + l’ = (ab+c)’ + d = a’c’ + 

b’c’ + d 
• q = o’+g’ = e’ + f’ + g’ 
• r = q’ = efg 
• s = p’+r’ = (a+c)(b+c)d’ + e’ + f’ 

+ g’ = abd’ + cd’ + e’ + f’ + g’ 
• t = q’ = efg 
• u = s’ = (a’+b’+d)(c’+d)efg = 

a’c’efg + b’c’efg + defg 
• v = u’ + h’ = abd’ + cd’ + e’ + f’ 

+ g’ + h’ 
• w = t’ + i’ = e’+f’+g’+i’ 
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Conversion : Example #2 

• How do you convert a general Boolean 
network (multi-level circuit) into a Boolean 
formula that is linear in the circuit size? 
– Size(formula) = O(M) where M = no. of gates in 

circuit 
– SOP may be exponential in the worst case 
– Hints 

• Use variables to represent intermediate signals in the 
circuit 

• Compose the formula using a 1 : 1 mapping from each 
gate in the circuit into a piece of the formula 
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