
ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Algebra (a.k.a. Boolean Logic)

• A family of operations on a set of two symbols or values ({0,1}
or {TRUE,FALSE}, or …) that obey certain laws

• Basic Operations
– Conjunction / AND : x ∧ y
– Disjunction / OR : x ∨ y
– Negation / Complement / NOT : ¬ x

• Complex operations: Any formula that can be composed of basic
operations
– Exclusive OR / XOR : x ⊕ y
– Implication : x → y

• Operations obey certain laws or axioms
• Analogy to the algebra of real numbers

– (B, ∨, ∧, ¬, 0, 1) ↔ (ℝ, +, *, -, 0, 1)

1

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Operators as Set Operations

• The operators of Boolean algebra can
also be interpreted in terms of sets
 Boolean operators

Set interpretation

2

http://upload.wikimedia.org/wikipedia/commons/4/43/Baops.gif�
http://upload.wikimedia.org/wikipedia/commons/4/43/Baops.gif�

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Basic Laws of Boolean Algebra
Law Description
Commutativity x ∨ y = y ∨ x

x ∧ y = y ∧ x
Associativity x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z
Distributivity x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
Identity x ∨ 0 = x

x ∧ 1 = x
Annihilation x ∧ 0 = 0

x ∨ 1 = 1
Idempotence x ∨ x = x

x ∧ x = x
Absorption x ∧ (x ∨ y) = x

x ∨ (x ∧ y) = x

3

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Basic Laws of Boolean Algebra

Law Description
Complementation x ∧ ¬x = 0

x ∨ ¬x = 1
Double Negation ¬¬x = x
De Morgan (¬x) ∧ (¬y) = ¬(x ∨ y)

(¬x) ∨ (¬y) = ¬(x ∧ y)

• Duality principle
― Boolean algebra is unchanged when 0,1 and ∧, ∨ are

interchanged

4

© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

ECE 595Z
Digital Systems Design Automation

Module 2 (Lectures 3-5) : Advanced Boolean Algebra

Lecture 4

Anand Raghunathan
MSEE 348

raghunathan@purdue.edu
5

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Did You Know?
• Boolean logic was the invention of George

Boole (1815-1864), an English mathematician
and philosopher

• Published his first paper at the age of 24
• Landmark papers

– “The mathematical analysis of logic”, published
in 1847.

– “An Investigation of the Laws of Thought, on
Which Are Founded the Mathematical Theories
of Logic and Probabilities”, published in 1854

• Argued that there was a strong analogy
between logic (then considered a discipline of
philosophy) and mathematics

• Initially, his theory was ignored or criticized by
the academic community

• Followed up later by a young student at MIT –
for his M.S thesis in 1937

– Showed how to use Boolean logic to optimize
electromechanical relay networks

• Boole's life was tragically cut

short when he died at the
age of 49, at the peak of his
intellectual abilities

• After walking 2 miles
through a drenching rain to
get to class and then
lecturing in wet clothes,
Boole caught a ‘feverish
cold’

• Boole was put to bed by his
wife, Mary Everest Boole,
who dumped buckets of
water on him based on the
theory that the remedy for
an illness ought to bear
resemblance to its cause

6

http://en.wikipedia.org/wiki/File:George_Boole.jpg�

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

That was easy … what else?

• Quite a bit!
– Boolean functions
– Operations on Boolean functions
– Representation of Boolean functions
– Co-factors and their applications

7

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Spaces

• Boolean space
of n variables
is the set of all
possible
values that
the variables
can assume

• Can be
represented as
an n-
dimensional
unit
hypercube

B1 = {0,1}

B2 = B x B =
{00,01,10,11}

Karnaugh Maps Boolean Hypercubes

B3

B4

Boolean
space

9
For information on hypercubes: http://en.wikipedia.org/wiki/Hypercube

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Functions

• Boolean function
– f(x): Bn → B

• x = x1, x2, …xn are variables
– xi ∈ B

• On-set of f
– {x | f(x) = 1} = f1 = f -1(1)

• Off-set of f
– {x | f(x) = 0} = f0 = f -1(0)

• Boolean functions are also
called Logic functions

x2

x1

Example: f(x): B2 → B

On-set : {01, 10}
Off-set: {00, 11}

0 1
1 0

x2

x1

0
1

10

0
1

0 1

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Functions (contd.)

• If f1 = Bn, i.e., f(x) = 1, f is a tautology
• If f0 = Bn, i.e., f(x) = 0, f is not satisfiable
• If f(x) = g(x) for all x ∈ Bn, then f and g are

equivalent

• Question: How many distinct logic
functions of n variables exist?
– Hint: Think of how many ways you
 can color the vertices of a Boolean
 cube with two colors

x1
x2

x3

11

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

The Set of Boolean Functions

• There are 2n vertices in input space Bn

→ 22n
 distinct logic functions.

– Assigning each distinct subset of vertices
as the on-set results in a distinct logic
function f1 ⊆ Bn

 x1x2x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

x1
x2

x3

12

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

The Set of Boolean Functions
• Another way to think about

Boolean functions
– Compose them using simple

functions and operators

• Simple functions
– Constant functions (f = 0, f = 1)
– Literals

• A literal is a variable (x1) or its
complement (x1’)

• Literal x1 represents the logic function
f = {x| x1 = 1}

• Literal x1’ represents the logic function
g = {x| x1 = 0}

x1

x3
x2

f = x1

x1
x2

x3

g = x1’

Notation: x1’ = x1

13

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Operations on Boolean Functions

Given two Boolean functions:
 f : Bn → B
 g : Bn → B

• AND operation
 f ⋅ g = {x | f(x)=1 ∧ g(x)=1}

• The OR operation
 f + g = {x | f(x)=1 ∨ g(x)=1}

• The COMPLEMENT operation (f’)
 f’ = {x | f(x) = 0}

Interpretation in terms of
on-set and off-set?

14

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

The Algebra of Boolean Functions

• The set of all Boolean Functions
together with the operations on them
also satisfy the laws of Boolean
Algebra

15

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Representations of Boolean Functions

• Truth Table
• Hypercube
• Boolean Formula

– Sum of Products (SOP), Disjunctive Normal
Form (DNF), List of Cubes

– Product of Sums, Conjunctive Normal Form
(CNF), List of Conjuncts

• Network (graph) of Boolean primitives
• Binary Decision Tree, Binary Decision

Diagram (BDD)

16

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Representations of Boolean Functions

• Important questions to ask of any
representation
– Scalable (can represent large functions)?
– Canonical?

• If two functions are the same, then their
representations are isomorphic (identical)

– Efficient to manipulate?

17

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Truth Table

• Truth table of a function f :
Bn → B is a tabulation of its
values at each of the 2n
vertices of Bn

• The truth table
representation is
+ Canonical
- Intractable for large n

Example:
a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

a
b

c

f = b c + a b’ c’

18

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Formula

• Boolean functions can be
represented by formulae
defined as well-formed
sequences of
– Literals: x1, x1’
– Boolean operators: + (OR), . (AND),

’ (NOT)
• NOT: f’ = h such that h1 = f0

• AND: (f AND g) = h such that h1 = {x |
f(x) = 1 and g(x) = 1}

• OR: (f OR g) = h such that h1 = {x | f(x) =
1 or g(x) = 1}

– Parentheses: ()

Examples:
f = x1.x2’ + x1’.x2
 = (x1 + x2).(x1’ + x2’)
h = x1 + x2.x3
 = (x1’.(x2’ + x3’))’

Notation: Often the “.”
for AND is replaced by
concatenation
e.g., x1x2 + x3

19

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Question

• How many Boolean formulae can be
constructed with n variables?

• How does this compare with the

number of unique Boolean functions
in n variables?

20

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Cubes

• A cube (a.k.a. product term) is the
conjunction (AND) of a set of literals
– Also, a collection of vertices that forms a

hypercube of lower dimension

• If C ⊆ Bn, and C has k literals, then
|C| covers 2n-k vertices

• In an n-dimensional Boolean space
Bn, a cube with n literals is called a
minterm

• If a cube C ⊆ f1 (f is a Boolean
function), then C is an implicant of f

x1
x2

x3

c = x1’x2x3’

x1
x2

x3

c = x1’

x1
x2

x3

c= x1’x2

21

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Sum of Products
Sum of Products (SOP)
• Any Boolean function can be represented by a

sum of products
 f = ab + ac + bc

• Can also be thought of as a set of cubes
 F = {ab, ac, bc}

• A set of cubes that correctly represents f is

called a cover of f.
• A function may have several different SOP

representations or covers
• Example:
 F1={ab, ac, bc} and
 F2={abc, a’bc, ab’c, abc’}
 are possible covers of the Boolean function
 f = ab + ac + bc

a
b

c

• Each on-set
vertex should be
covered by at
least one cube.

• No cube should
cover any off-set
vertex.

Properties of a cover

22

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

SOP : Minterm Canonical Form

• A Sum of Products
representation for a
function where each
product is a minterm
– For a function of n

variables, each product
has n literals representing
all n variables

Example:
a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Minterm canonical form:

23

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Product of Sums
• Product (conjunction) of

terms, each of which is a
sum (disjunction) of
literals
– E.g., f = (a + b + c)(a + b + c’)

(a’ + b + c’)(a’ + b’ + c)

• One-to-one transformation
from SOP representation
for f to POS representation
for f’ (complement of f)
– Follows from De Morgan’s

law

• From truth table, use off-
set to construct POS
representation

Example:
a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

POS representation:

24

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Binary Decision Tree

• Represent the
function as a
decision tree

• At each node, pick
a variable and
branch based on
it’s value

• Leaves of the tree
contain constants
(0,1)

a

Example:
a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Binary Decision Tree:

25

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Binary Decision Diagram (BDD)

• Binary Decision Tree
has large number of
nodes

• Key idea: Share sub-
trees and eliminate
redundancy to
reduce size

• More about BDDs
later in the class

a

Example:
a b c f
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Binary Decision Diagram:

c

b b

a

0 1

0
1

26

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Converting Between Boolean Function
Representations

• All of the previously
described
representations are
functionally equivalent

• Vary in their complexity
(size), and ease of
performing various
operations

• Simple algorithms exist
to convert from one form
to another

Truth
Table

SOP

POS

Boolean
Hypercube

Binary
Decision
Diagram

Boolean
Network

27

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Conversion : Example #1

• How do you convert a general Boolean
network (multi-level circuit) into SOP
form?
– Quick-and-dirty (exhaustive) algorithm

– Works, but guaranteed to be exponential in the
number of inputs

• There should be a better algorithm!

For each input vector (00…0 to 11…1) {
Simulate the circuit;
If (output == 1) {

encode input vector as minterm;
}

}

28

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Conversion : Example #1
a

b
c

d

e
f

g

h

i

j

k
l

m

n

o

p

q

r

s u

t

v

w

Notice the similarity to circuit simulation?
Only difference is, we are propagating
Boolean expressions, not 0/1 values.
This is called Symbolic Simulation

• j = (ab)’ = a’ + b’
• k = c’
• l = d’
• m = e’ + f’
• n = j’ + k’ = (a’+b’)’ + (c’)’ = ab +

c
• o = m’ = ef
• p = n’ + l’ = (ab+c)’ + d = a’c’ +

b’c’ + d
• q = o’+g’ = e’ + f’ + g’
• r = q’ = efg
• s = p’+r’ = (a+c)(b+c)d’ + e’ + f’

+ g’ = abd’ + cd’ + e’ + f’ + g’
• t = q’ = efg
• u = s’ = (a’+b’+d)(c’+d)efg =

a’c’efg + b’c’efg + defg
• v = u’ + h’ = abd’ + cd’ + e’ + f’

+ g’ + h’
• w = t’ + i’ = e’+f’+g’+i’

29

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Conversion : Example #2

• How do you convert a general Boolean
network (multi-level circuit) into a Boolean
formula that is linear in the circuit size?
– Size(formula) = O(M) where M = no. of gates in

circuit
– SOP may be exponential in the worst case
– Hints

• Use variables to represent intermediate signals in the
circuit

• Compose the formula using a 1 : 1 mapping from each
gate in the circuit into a piece of the formula

30

	Boolean Algebra (a.k.a. Boolean Logic)
	Boolean Operators as Set Operations
	Basic Laws of Boolean Algebra
	Basic Laws of Boolean Algebra
	ECE 595Z�Digital Systems Design Automation��Module 2 (Lectures 3-5) : Advanced Boolean Algebra�Lecture 4
	Did You Know?
	That was easy … what else?
	Boolean Spaces
	Boolean Functions
	Boolean Functions (contd.)
	The Set of Boolean Functions
	The Set of Boolean Functions
	Operations on Boolean Functions
	The Algebra of Boolean Functions
	Representations of Boolean Functions
	Representations of Boolean Functions
	Truth Table
	Boolean Formula
	Question
	Cubes
	Sum of Products
	SOP : Minterm Canonical Form
	Product of Sums
	Binary Decision Tree
	Binary Decision Diagram (BDD)
	Converting Between Boolean Function Representations
	Conversion : Example #1
	Conversion : Example #1
	Conversion : Example #2

