

ECE 595Z Digital Systems Design Automation

Module 2 (Lectures 3-5) : Advanced Boolean Algebra Lecture 5

Anand Raghunathan MSEE 348 raghunathan@purdue.edu

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Terminology Checklist

- Boolean Algebra
- Boolean Function
- Cube
- Implicant (of a function)
- Minterm
- Cover (of a function)
- Tautology
- Satisfiable / Un-satisfiable
- Sum-of-products
- Minterm canonical representation
- Product-of-sums
- Conjunctive Normal Form
- Disjunctive Normal Form
- Binary Decision Tree
- Binary Decision Diagram
- Symbolic Simulation

Lecture #5 Outline

- Converting between representations continued
- Co-factors and their applications

Conversion : Example #2

- How do you convert a general Boolean network (multi-level circuit) into a Boolean formula that is linear in the circuit size?
 - Size(formula) = O(M) where M = no. of gates in circuit
 - SOP may be exponential in the worst case
 - Hints
 - Use variables to represent intermediate signals in the circuit
 - Compose the formula using a 1 : 1 mapping from each gate in the circuit into a piece of the formula

Converting a Boolean Circuit into a CNF Formula

• First, let us see how very simple circuits (single gates) can be expressed in CNF form

Converting a Boolean Circuit into a CNF Formula

• Simple rules for converting various basic gates into CNF equivalent

Gate Type	Function	CNF Formula
NOT	c = a'	(a+c)(a'+c')
AND	c=ab	(a+c')(b+c')(a'+b'+c)
NAND	c=a'+b'	(a+c)(b+c)(a'+b'+c')
OR	c=a+b	(a'+c)(b'+c)(a+b+c')
NOR	c = a'b'	(a'+c')(b'+c')(a+b+c)

Converting a Boolean Circuit into a CNF Formula

- Now, we are ready to convert a multi-level circuit into a CNF formula
 - Simply concatenate formulae representing each of its gates (a+j)(b+j)(a'+b'+j')

Co-factors

- A very useful operation on Boolean functions
- Applications of co-factors
 - Shannon's expansion
 - Boolean difference
 - Universal and Existential Quantification

Co-factors of Boolean Functions

- A co-factor of a function is derived by fixing one of the variables to a constant (0 or 1), resulting in a new function of n-1 variables
- Given a function $f(x_1 \dots x_n)$
 - Positive co-factor w.r.t. x_i is defined as

 $f_{x_{i}}(x_{1} \dots x_{i-1}, x_{i+1} \dots x_{n}) = f(x_{1} \dots x_{i-1}, x_{i} = 1, x_{i+1} \dots x_{n})$

Negative co-factor w.r.t. xi is defined as

$$f_{x_{i}}(x_{1} \dots x_{i-1}, x_{i+1} \dots x_{n}) = f(x_{1} \dots x_{i-1}, x_{i} = 0, x_{i+1} \dots x_{n})$$

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Examples:

$$f = ab + bc + ac$$

$$f_a = 1.b + bc + 1.c = b + c$$

$$f_{a'} =$$

$$f_b =$$

$$f_{b'} =$$

$$f_c =$$

$$f_{c'} =$$

$$g_a =$$

$$g_a =$$

$$g_{a'} =$$

$$g_b =$$

$$g_{b'} =$$

$$g_{c} =$$

$$g_{c'} =$$

Co-factors of Boolean Functions

- Also called
 - Shannon co-factors
 - Restriction of a function on a variable
- Can be applied on multiple variables

$$f_{x_i x_j} = f(x_1 \dots x_i = 1 \dots x_j = 0 \dots x_n)$$

- Order does not matter $f_{x_i x_j} = (f_{x_i})_{x_j} = (f_{x_j})_{x_i}$
- Co-factor w.r.t. a cube

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Examples: f = ab + bc + ac $f_{ab} =$ $f_{ab'} =$ $f_{a'b'c'} =$ $f_{ab'c} =$ $g_{ab} =$ $g_{a'b} =$ $g_{b'c'} =$ $g_{abc'} =$

OK, so why do we need Co-factors?

- Many applications... for example
- Recall **Taylor series** from highschool math?
 - A representation of a (real or complex) function as a sum of polynomial terms (1, x, x², x³, x⁴, ...)

• $e^x = 1 + x + x^2/2! + x^3/3! + \dots$

– General form:

• Question: Is there a similar concept for Boolean functions?

Animation of Taylor series for e^x (Source: Wikipedia)

• Given a Boolean function $f(x_1 \dots x_n)$ and any variable x_i

$$f = x_i f_{x_i} + x_{i'} f_{x_{i'}}$$

Shannon Expansion

- Also called Shannon
 Decomposition
- Can be applied recursively to "decompose" a function into it's cofactors
 - In the extreme case, just a network of multiplexers

For an interesting application to variation-tolerant synthesis, see: Swaroop Ghosh, Swarup Bhunia and Kaushik Roy, "CRISTA: A new paradigm for low-power and robust circuit synthesis under parameter variations using critical path isolation", IEEE Trans. Computer Aided Design, Nov 2007.

Shannon Expansion

• Example

f = xy + zw' + x'w'

Properties of Co-factors

- Given two functions f(x) and g(x)
- How can we compute co-factors of a function h that is derived from f and g?

Function	Co-factors	
h(x) = f'(x)	$h_{x_i} = (f_{x_i})'$ $h_{x_i'} = (f_{x_i'})'$	Co-factor of complement is complement of co-factor
h(x) = f(x) AND g(x)	$h_{x_i} = f_{x_i} AND g_{x_i}$ $h_{x_i'} = f_{x_i'} AND g_{x_i'}$	Co-factor of AND is AND of co-factors
h(x) = f(x) OR g(x)	$h_{x_i} = f_{x_i} OR g_{x_i}$ $h_{x_i'} = f_{x_i'} OR g_{x_i'}$	Co-factor of OR is OR of co-factors
h(x) = f(x) XOR g(x)		Co-factor of XOR is XOR of co-factors

The co-factor operation distributes over any binary operator

Combinations of Co-factors

• Combining f_x and $f_{x'}$ in different ways leads to useful new functions

$$-f_{x} \bigoplus f_{x'} = ?$$

-f_{x} f_{x'} = ?
-f_{x} + f_{x'} = ?

Another analogy to the "real" world

- The derivative of a function measures how much it changes when it's input changes
- Let us think of the analogy in the case of Boolean functions (which only take values 0 and 1)

$$f'(x) = \lim_{\Delta \to 0} \frac{f(x + \Delta) - f(x)}{\Delta}$$

Boolean Difference

- Boolean difference of a function w.r.t. a variable is the exclusive-OR of the Shannon co-factors w.r.t. the variable
- Interpretation: $\frac{\partial}{\partial x} = 1 \rightarrow f$ is sensitive to the value of x
- A new function that does not depend on x

Example: f = xy + zw' + x'w' $\frac{\partial f}{\partial x} =$

Boolean Difference

• Examples:

$$\begin{array}{c}a \longrightarrow \\ b \longrightarrow \\ c_{in} \end{array} \xrightarrow{} Full \\ Adder \xrightarrow{} c_{out} \end{array}$$

$$\frac{\partial s}{\partial a} =$$

$$\frac{\partial c_{out}}{\partial c_{in}} =$$

Application of Boolean Difference

- Manufacturing test
 - Apply test vectors to ensure that each fabricated instance of an IC behaves correctly
 - Cannot apply exhaustive test set (too big!)
- Fault model : Abstraction of physical defects that could impact the IC
 - Commonly used: "stuckat" fault model
 - Signals in the circuit are stuck-at-0, stuck-at-1

How do you derive a test vector to detect the fault c s-a-0?

- (i) Set c = 1
- (ii) Set other inputs such that output of good and faulty circuits are different

Looks familiar?

Co-factors: Re-cap

- A very useful operation on Boolean functions
 - Derived by fixing one of the variables to a constant (0 or 1)
- Applications of co-factors
 - Shannon's expansion a way to recursively simplify or divide Boolean functions
 - Boolean difference ($f_x \oplus f_{x'}$)
 - Universal and Existential Quantification

Quantification

- Two more functions of Shannon cofactors
 - f_{x_i} . $f_{x_i'} = 1$ specifies when f = 1 independent of the value of x_i

 $f(x_1 \dots x_{i-1}, \mathbf{x_i} = 1, x_{i+1} \dots x_n) = 1 \text{ AND}$ $f(x_1 \dots x_{i-1}, \mathbf{x_i} = 0, x_{i+1} \dots x_n) = 1$

$$\forall x(f) = f_x \cdot f_{x'}$$

 Called Universal quantification or Consensus