
© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

ECE 595Z
Digital Systems Design Automation

Module 2 (Lectures 3-5) : Advanced Boolean Algebra

Lecture 5

Anand Raghunathan
MSEE 348

raghunathan@purdue.edu
1

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Terminology Checklist
• Boolean Algebra
• Boolean Function
• Cube
• Implicant (of a function)
• Minterm
• Cover (of a function)
• Tautology
• Satisfiable / Un-satisfiable
• Sum-of-products
• Minterm canonical representation
• Product-of-sums
• Conjunctive Normal Form
• Disjunctive Normal Form
• Binary Decision Tree
• Binary Decision Diagram
• Symbolic Simulation

 2

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Lecture #5 Outline

• Converting between representations -
continued

• Co-factors and their applications

3

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Conversion : Example #2

• How do you convert a general Boolean
network (multi-level circuit) into a Boolean
formula that is linear in the circuit size?
– Size(formula) = O(M) where M = no. of gates in

circuit
– SOP may be exponential in the worst case
– Hints

• Use variables to represent intermediate signals in the
circuit

• Compose the formula using a 1 : 1 mapping from each
gate in the circuit into a piece of the formula

4

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Converting a Boolean Circuit into a
CNF Formula

• First, let us see how very simple
circuits (single gates) can be
expressed in CNF form

a

b

c c = ab

c → ab, ab → c

c → a, c → b, ab → c
 a

b

(a+c’)(b+c’)(a’+b’+c)

a’ → c’, b’ → c’, ab → c

a = 0 → c = 0
b = 0 → c = 0
a = 1, b = 1 → c = 1

5

http://upload.wikimedia.org/wikipedia/commons/4/43/Baops.gif�

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Converting a Boolean Circuit into a
CNF Formula

• Simple rules for converting various
basic gates into CNF equivalent

Gate Type Function CNF Formula
NOT c = a’ (a+c)(a’+c’)
AND c=ab (a+c’)(b+c’)(a’+b’+c)
NAND c=a’+b’ (a+c)(b+c)(a’+b’+c’)
OR c=a+b (a’+c)(b’+c)(a+b+c’)
NOR c = a’b’ (a’+c’)(b’+c’)(a+b+c)

6

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Converting a Boolean Circuit into a
CNF Formula

• Now, we are ready to convert a multi-level
circuit into a CNF formula
– Simply concatenate formulae representing each

of its gates

a

b
c

d

e
f

g

h

i

j

k
l

m

n

o

p

q

r

s u

t

v

w

(a+j)(b+j)(a’+b’+j’)
(c+k)(c’+k’)
(d+l)(d’+l’)
(e+m)(f+m)(e’+f’+m’)
(m+o)(m’+o’)
(j+n)(k+n)(j’+k’+n’)
(n+p)(l+p)(n’+l’+p’)
(o+q)(g+q)(o’+g’+q’)
(q+r)(q’+r’)
(p+s)(r+s)(p’+r’+s’)
(s+u)(s’+u’)
(u+v)(h+v)(u’+h’+v’)
(q+t)(q’+t’)
(t+w)(i+w)(t’+I’+w’)

7
Known as the Tseitin Transformation

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Co-factors

• A very useful operation on Boolean
functions

• Applications of co-factors
– Shannon’s expansion
– Boolean difference
– Universal and Existential Quantification

8

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Co-factors of Boolean Functions

• A co-factor of a function is
derived by fixing one of the
variables to a constant (0 or 1),
resulting in a new function of
n-1 variables

• Given a function f(x1 … xn)
– Positive co-factor w.r.t. xi is

defined as
fxi

 (x1 … xi-1, xi+1 … xn) =
f(x1 … xi-1, xi =1, xi+1 … xn)

– Negative co-factor w.r.t. xi is
defined as

fxi’
(x1 … xi-1, xi+1 … xn) =

f(x1 … xi-1, xi =0, xi+1 … xn)

Examples:

f = ab + bc + ac
fa = 1.b + bc + 1.c = b + c
fa’ =
fb =
fb’ =
fc =
fc’ =

a
b
c

g

ga =
ga’ =
gb =
gb’ =
gc =
gc’ =

9

http://upload.wikimedia.org/wikipedia/commons/1/17/XOR_ANSI_Labelled.svg�

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Co-factors of Boolean Functions

• Also called
– Shannon co-factors
– Restriction of a function on

a variable

• Can be applied on

multiple variables
fxixj’

 = f(x1 … xi =1 … xj =0 … xn)

• Order does not matter
fxixj

= (fxi
)xj

= (fxj
)xi

• Co-factor w.r.t. a cube

Examples:

f = ab + bc + ac

fab =

fab’ =

fa’b’c’ =

fab’c =

a
b
c

g

gab =

ga’b =

gb’c’ =

gabc’ =

10

http://upload.wikimedia.org/wikipedia/commons/1/17/XOR_ANSI_Labelled.svg�

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

OK, so why do we need Co-factors?

• Many applications… for example
• Recall Taylor series from high-

school math?
– A representation of a (real or

complex) function as a sum of
polynomial terms (1, x, x2, x3, x4,
…)

• ex = 1 + x + x2/2! + x3/3! + …
– General form:

 f =

• Question: Is there a similar
concept for Boolean functions?

Animation of Taylor
series for ex

(Source: Wikipedia)

11

http://en.wikipedia.org/wiki/File:Exp_series.gif�

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Shannon’s Expansion Theorem
• Given a Boolean function f(x1 … xn) and any

variable xi

 f = xi fxi
 + xi’ fxi’

Structural view of
Shannon Expansion

f
x1
x2
xi

xn

f

f

0
1

xi

x1
x2
0

xn

x1
x2
1

xn
12

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Shannon Expansion

• Also called Shannon
Decomposition

• Can be applied
recursively to
“decompose” a
function into it’s co-
factors
– In the extreme case,

just a network of
multiplexers

For an interesting application to variation-tolerant synthesis, see:
Swaroop Ghosh, Swarup Bhunia and Kaushik Roy, “CRISTA: A new paradigm for low-power and robust
circuit synthesis under parameter variations using critical path isolation”, IEEE Trans. Computer Aided
Design, Nov 2007.

MUX
network

2k co-factors

n

k

n-k

13

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Shannon Expansion

• Example
f = xy + zw’ + x’w’

14

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Properties of Co-factors

• Given two functions f(x) and g(x)
• How can we compute co-factors of a

function h that is derived from f and g?
Function Co-factors
h(x) = f’(x) hxi

 = (fxi
)’

hxi’
= (fxi’

)’
h(x) = f(x) AND g(x) hxi

 = fxi
 AND gxi

hxi’
 = fxi’

 AND gxi’

h(x) = f(x) OR g(x) hxi
 = fxi

 OR gxi
hxi’

 = fxi’
 OR gxi’

h(x) = f(x) XOR g(x) hxi
 = fxi

 XOR gxi
hxi’

 = fxi’
 XOR gxi’

Co-factor of complement is
complement of co-factor
Co-factor of AND is
AND of co-factors

Co-factor of OR is
OR of co-factors

Co-factor of XOR is
XOR of co-factors

The co-factor operation distributes over any binary operator
15

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Combinations of Co-factors

• Combining fx and fx’ in different ways
leads to useful new functions
– fx ⊕ fx’ = ?
– fx . fx’ = ?
– fx+ fx’ = ?

16

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Another analogy to the “real” world

• The derivative of a
function measures
how much it changes
when it’s input
changes

• Let us think of the
analogy in the case of
Boolean functions
(which only take
values 0 and 1)

x+∆ x

f(x)
f(x+∆)

∆
−∆+

=
→∆

)()()(
0

' xfxfLimxf

17

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Difference

• Boolean difference of a
function w.r.t. a variable
is the exclusive-OR of the
Shannon co-factors w.r.t.
the variable

• Interpretation: = 1 → f
is sensitive to the value
of x

• A new function that does
not depend on x

' xx ff
x
f

⊕=
∂
∂

x
f
∂
∂

Example:
f = xy + zw’ + x’w’
fx =
fx’ =

=
x
f
∂
∂

18

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Boolean Difference

• Examples:

Full
Adder

a
b
cin cout

s

=
∂
∂
a
s

=
∂
∂

in

out

c
c

0
1

s

a

b
out

=
∂
∂

a
out

=
∂
∂

s
out

19

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Application of Boolean Difference

• Manufacturing test
– Apply test vectors to

ensure that each
fabricated instance of an
IC behaves correctly

– Cannot apply exhaustive
test set (too big!)

• Fault model :
Abstraction of physical
defects that could
impact the IC
– Commonly used: “stuck-

at” fault model
– Signals in the circuit are

stuck-at-0, stuck-at-1

a
b

c
d

out s-a-0

How do you derive a test vector
to detect the fault c s-a-0?

(i) Set c = 1
(ii) Set other inputs such that

output of good and faulty
circuits are different

Looks familiar?

20

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Co-factors: Re-cap

• A very useful operation on Boolean
functions
– Derived by fixing one of the variables to a

constant (0 or 1)
• Applications of co-factors

– Shannon’s expansion – a way to
recursively simplify or divide Boolean
functions

– Boolean difference (fx ⊕ fx’)
– Universal and Existential Quantification

21

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Quantification
• Two more functions of Shannon co-

factors
– fxi

. fxi’
 = 1 specifies when f = 1 independent

of the value of xi

 f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND
 f(x1 … xi-1, xi =0, xi+1 … xn) = 1
– Called Universal quantification or

Consensus

')(xx fffx ⋅=∀

Ca(f)

22

	ECE 595Z�Digital Systems Design Automation��Module 2 (Lectures 3-5) : Advanced Boolean Algebra�Lecture 5
	Terminology Checklist
	Lecture #5 Outline
	Conversion : Example #2
	Converting a Boolean Circuit into a�CNF Formula
	Converting a Boolean Circuit into a�CNF Formula
	Converting a Boolean Circuit into a�CNF Formula
	Co-factors
	Co-factors of Boolean Functions
	Co-factors of Boolean Functions
	OK, so why do we need Co-factors?
	Shannon’s Expansion Theorem
	Shannon Expansion
	Shannon Expansion
	Properties of Co-factors
	Combinations of Co-factors
	Another analogy to the “real” world
	Boolean Difference
	Boolean Difference
	Application of Boolean Difference
	Co-factors: Re-cap
	Quantification

