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Terminology Checklist 
• Boolean Algebra 
• Boolean Function 
• Cube 
• Implicant (of a function) 
• Minterm 
• Cover (of a function) 
• Tautology 
• Satisfiable / Un-satisfiable 
• Sum-of-products 
• Minterm canonical representation 
• Product-of-sums 
• Conjunctive Normal Form 
• Disjunctive Normal Form 
• Binary Decision Tree 
• Binary Decision Diagram 
• Symbolic Simulation 
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Lecture #5 Outline 

• Converting between representations - 
continued 

• Co-factors and their applications 
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Conversion : Example #2 

• How do you convert a general Boolean 
network (multi-level circuit) into a Boolean 
formula that is linear in the circuit size? 
– Size(formula) = O(M) where M = no. of gates in 

circuit 
– SOP may be exponential in the worst case 
– Hints 

• Use variables to represent intermediate signals in the 
circuit 

• Compose the formula using a 1 : 1 mapping from each 
gate in the circuit into a piece of the formula 
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Converting a Boolean Circuit into a 
CNF Formula 

• First, let us see how very simple 
circuits (single gates) can be 
expressed in CNF form 

a 

b 

c c = ab 
 

c → ab, ab → c 
 

c → a, c → b, ab → c 
 a 

b 

(a+c’)(b+c’)(a’+b’+c) 

a’ → c’, b’ → c’, ab → c 

a = 0 → c = 0 
b = 0 → c = 0 
a = 1, b = 1 → c = 1 
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Converting a Boolean Circuit into a 
CNF Formula 

• Simple rules for converting various 
basic gates into CNF equivalent 

Gate Type Function CNF Formula 
NOT c = a’ (a+c)(a’+c’) 
AND c=ab (a+c’)(b+c’)(a’+b’+c) 
NAND c=a’+b’ (a+c)(b+c)(a’+b’+c’) 
OR c=a+b (a’+c)(b’+c)(a+b+c’) 
NOR c = a’b’ (a’+c’)(b’+c’)(a+b+c) 
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Converting a Boolean Circuit into a 
CNF Formula 

• Now, we are ready to convert a multi-level 
circuit into a CNF formula 
– Simply concatenate formulae representing each 

of its gates 

a 

b 
c 

d 

e 
f 

g 

h 

i 

j 

k 
l 

m 

n 

o 

p 

q 

r 

s u 

t 

v 

w 

(a+j)(b+j)(a’+b’+j’) 
(c+k)(c’+k’) 
(d+l)(d’+l’) 
(e+m)(f+m)(e’+f’+m’) 
(m+o)(m’+o’) 
(j+n)(k+n)(j’+k’+n’) 
(n+p)(l+p)(n’+l’+p’) 
(o+q)(g+q)(o’+g’+q’) 
(q+r)(q’+r’) 
(p+s)(r+s)(p’+r’+s’) 
(s+u)(s’+u’) 
(u+v)(h+v)(u’+h’+v’) 
(q+t)(q’+t’) 
(t+w)(i+w)(t’+I’+w’) 
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Co-factors 

• A very useful operation on Boolean 
functions 

• Applications of co-factors 
– Shannon’s expansion 
– Boolean difference 
– Universal and Existential Quantification 
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Co-factors of Boolean Functions 

• A co-factor of a function is 
derived by fixing one of the 
variables to a constant (0 or 1), 
resulting in a new function of 
n-1 variables 

• Given a function f(x1 … xn) 
– Positive co-factor w.r.t. xi is 

defined as 
fxi

 (x1 … xi-1, xi+1 … xn)  = 
f(x1 … xi-1, xi =1, xi+1 … xn) 

– Negative co-factor w.r.t. xi is 
defined as 

fxi’ 
(x1 … xi-1, xi+1 … xn)  =  

f(x1 … xi-1, xi =0, xi+1 … xn) 

Examples: 

f = ab + bc + ac 
fa = 1.b + bc + 1.c = b + c 
fa’ = 
fb =  
fb’ =  
fc =  
fc’ =  

a 
b 
c 

g 

ga = 
ga’ = 
gb =  
gb’ =  
gc =  
gc’ =  
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Co-factors of Boolean Functions 

• Also called 
– Shannon co-factors 
– Restriction of a function on 

a variable 

 
• Can be applied on 

multiple variables 
fxixj’

  = f(x1 … xi =1 … xj =0 … xn) 

• Order does not matter 
fxixj 

= (fxi
)xj 

= (fxj
)xi 

• Co-factor w.r.t. a cube 
 

Examples: 

f = ab + bc + ac 

fab = 

fab’ = 

fa’b’c’ =  

fab’c =  

a 
b 
c 

g 

gab = 

ga’b = 

gb’c’ =  

gabc’ =  

10 

http://upload.wikimedia.org/wikipedia/commons/1/17/XOR_ANSI_Labelled.svg�


ECE 595Z: Digital Logic Systems Design Automation, Spring 2012 

OK, so why do we need Co-factors? 

• Many applications… for example  
• Recall Taylor series from high-

school math? 
– A representation of a (real or 

complex) function as a sum of 
polynomial terms (1, x, x2, x3, x4, 
…) 

• ex = 1 + x + x2/2! + x3/3! + … 
– General form:  

  f =  
 

• Question: Is there a similar 
concept for Boolean functions? 

Animation of Taylor 
series for ex 

(Source: Wikipedia) 
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Shannon’s Expansion Theorem 
• Given a Boolean function f(x1 … xn) and any 

variable xi 

   f = xi fxi
 + xi’ fxi’ 

Structural view of 
Shannon Expansion 

f 
x1 
x2 
xi 

xn 

f 

f 

0 
1 

xi 

x1 
x2 
0 

xn 

x1 
x2 
1 

xn 
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Shannon Expansion 

• Also called Shannon 
Decomposition 

• Can be applied 
recursively to 
“decompose” a 
function into it’s co-
factors 
– In the extreme case, 

just a network of 
multiplexers 

For an interesting application to variation-tolerant synthesis, see: 
Swaroop Ghosh, Swarup Bhunia and Kaushik Roy, “CRISTA: A new paradigm for low-power and robust 
circuit synthesis under parameter variations using critical path isolation”, IEEE Trans. Computer Aided 
Design, Nov 2007.  

MUX 
network 

2k co-factors 

n 

k 

n-k 
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Shannon Expansion 

• Example 
f = xy + zw’ + x’w’ 
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Properties of Co-factors 

• Given two functions f(x) and g(x) 
• How can we compute co-factors of a 

function h that is derived from f and g? 
Function Co-factors 
h(x) = f’(x) hxi

 = (fxi
)’ 

hxi’ 
= (fxi’

)’ 
h(x) = f(x) AND g(x) hxi

 = fxi
 AND gxi 

hxi’
 = fxi’

 AND gxi’ 

h(x) = f(x) OR g(x) hxi
 = fxi

 OR gxi 
hxi’

 = fxi’
 OR gxi’ 

h(x) = f(x) XOR g(x) hxi
 = fxi

 XOR gxi 
hxi’

 = fxi’
 XOR gxi’ 

Co-factor of complement is 
complement of co-factor 
Co-factor of AND is 
AND of co-factors 

Co-factor of OR is 
OR of co-factors 

Co-factor of XOR is 
XOR of co-factors 

The co-factor operation distributes over any binary operator  
15 
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Combinations of Co-factors 

• Combining fx and fx’ in different ways 
leads to useful new functions 
– fx  ⊕ fx’ = ? 
– fx . fx’ = ? 
– fx+ fx’ = ? 
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Another analogy to the “real” world 

• The derivative of a 
function measures 
how much it changes 
when it’s input 
changes 
 

• Let us think of the 
analogy in the case of 
Boolean functions 
(which only take 
values 0 and 1) 

x+∆ x 

f(x) 
f(x+∆) 

∆
−∆+

=
→∆

)()()(
0

' xfxfLimxf
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Boolean Difference 

• Boolean difference of a 
function w.r.t. a variable 
is the exclusive-OR of the 
Shannon co-factors w.r.t. 
the variable 
 

• Interpretation:     = 1 → f 
is sensitive to the value 
of x 

• A new function that does 
not depend on x 

'  xx ff
x
f

⊕=
∂
∂

x
f
∂
∂

Example: 
f = xy + zw’ + x’w’ 
fx = 
fx’ =  
 

=
x
f
∂
∂  
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Boolean Difference 

• Examples: 

Full 
Adder 

a 
b 
cin cout 

s 

=
∂
∂
a
s  

=
∂
∂

in

out

c
c  

0 
1 

s 

a 

b 
out 

=
∂
∂

a
out  

=
∂
∂

s
out  
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Application of Boolean Difference 

• Manufacturing test 
– Apply test vectors to 

ensure that each 
fabricated instance of an 
IC behaves correctly 

– Cannot apply exhaustive 
test set (too big!) 

• Fault model : 
Abstraction of physical 
defects that could 
impact the IC 
– Commonly used: “stuck-

at” fault model 
– Signals in the circuit are 

stuck-at-0, stuck-at-1 

a 
b 

c 
d 

out s-a-0 

How do you derive a test vector 
to detect the fault c s-a-0? 
 
(i) Set c = 1 
(ii) Set other inputs such that 

output of good and faulty 
circuits are different 

 
Looks familiar? 
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Co-factors: Re-cap 

• A very useful operation on Boolean 
functions 
– Derived by fixing one of the variables to a 

constant (0 or 1) 
• Applications of co-factors 

– Shannon’s expansion – a way to 
recursively simplify or divide Boolean 
functions 

– Boolean difference (fx  ⊕ fx’) 
– Universal and Existential Quantification 
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Quantification 
• Two more functions of Shannon co-

factors 
– fxi 

. fxi’
 = 1 specifies when f = 1 independent 

of the value of xi 

   f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND 
   f(x1 … xi-1, xi =0, xi+1 … xn) = 1  
– Called Universal quantification or 

Consensus 
 

')( xx fffx ⋅=∀

Ca(f) 
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