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Co-factors: Re-cap 

• A very useful operation on Boolean 
functions 
– Derived by fixing one of the variables to a 

constant (0 or 1) 
• Applications of co-factors 

– Shannon’s expansion – a way to 
recursively simplify or divide Boolean 
functions 

– Boolean difference (fx  ⊕ fx’) 
– Universal and Existential Quantification 
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Quantification 
• Two more functions of Shannon co-

factors 
– fxi 

. fxi’
 = 1 specifies when f = 1 independent 

of the value of xi 

   f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND 
   f(x1 … xi-1, xi =0, xi+1 … xn) = 1  
– Called Universal quantification or 

Consensus 
 

')( xx fffx ⋅=∀

Ca(f) 
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Universal Quantification / Consensus 

• Geometric interpretation using 
Boolean hypercube representation 

a 
b 

c 

f = ab + bc + ac 

Geometric interpretation: Keep vertices where f = 1 independent of a 

fa = b + c 
fa’ = bc 

a 
b 

c 

bcfa =∀ )(
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Universal Quantification / Consensus 

• Circuit interpretation 

f 

f 

x1 
x2 
0 

xn 

x1 
x2 
1 

xn 

Cxi
(f) 
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Quantification 
• Two more functions of Shannon co-

factors 
– fxi 

. fxi’
 = 1 specifies when f = 1 independent 

of the value of xi 

   f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND 
   f(x1 … xi-1, xi =0, xi+1 … xn) = 1  
– Called Universal quantification or 

Consensus 
 

– fx + fx’ = 1 specifies when f = 1 for at least 
one value of xi 

   f(x1 … xi-1, xi =1, xi+1 … xn) = 1 OR 
   f(x1 … xi-1, xi =0, xi+1 … xn) = 1 
– Called Existential quantification or 

Smoothing 

')( xx fffx ⋅=∀

')( xx fffx +=∃

Ca(f) 

Sa(f) 
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Existential Quantification / Smoothing 

• Geometric interpretation using 
Boolean hypercube representation 

a 
b 

c 

f = ab + bc + ac 

Geometric interpretation: If an off-set vertex has an on-set neighbor in 
the a-dimension, move it into the on-set 

fa = b + c 
fa’ = bc 

a 
b 

c 

cbfa +=∃ )(
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Existential Quantification / Smoothing 

• Circuit interpretation 

f 

f 

x1 
x2 
0 

xn 

x1 
x2 
1 

xn 

Sxi
(f) 

7 

http://upload.wikimedia.org/wikipedia/commons/4/4c/Or-gate-en.svg�


ECE 595Z: Digital Logic Systems Design Automation, Spring 2012 

Properties of Consensus and Smoothing 
• Can be applied w.r.t. 

multiple variables 
– Cxy(f) = Cx(Cy(f)) = Cy(Cx(f)) 

– Sxy(f) = Sx(Sy(f)) = Sy(Sx(f)) 

 

• Containment properties 
– Consensus of a function f 

w.r.t. variable x is 
contained in f 

– Smoothing of a function f 
w.r.t. variable x contains f 

)()( fxffx ∃⊆⊆∀

)()( fSffC xx ⊆⊆

Hint: In this context, think of 
a function in terms of it’s on-set 
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Quantification Examples 

• Examples: 

Full 
Adder 

a 
b 
cin cout 

s 

=∀a(s)

=∃  )a(cout

0 
1 

s 

a 

b 
out 

=∀ (s)cin

=∃ )(cc outin

=∀a(out)

=∃  a(out)

=∀s(out)

=∃s(out)
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Lectures 3-5 Summary 

• Boolean Algebra: Quick Review 
• Advanced Boolean Algebra 

– Boolean spaces and functions 
– Representations of Boolean functions 
– Operations on Boolean functions 
– Co-factors and their applications 

• Shannon’s expansion 
• Boolean difference 
• Existential and Universal Quantification 

– a.k.a., Smoothing and Consensus 
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Reading for Lectures #5-8 

• Next Topic: Two-level synthesis 
– De Micheli, Chapter 7.1-7.4, 7.7 
– Hachtel & Somenzi, Chapter 4, Chapter 5 
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Re-visiting a Classic Problem 

• What you know from your Digital 
Design class 
– Truth tables and Karnaugh maps 
– How to manually create minimal two-level 

(Sum-of-Products) implementations 
• What we will discuss here 

– How the same thing can be done 
automatically 

– Computational strategies and scalability 
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Two-level Logic Minimization :  
A Brief History 

• Initial ideas from 
Willard Quine 
– Quine, W.V. The Problem of Simplifying 

Truth Functions. In American 
Mathematical Monthly, Volume 59, 
Number 8 (1952), pp. 521-531. 

– Quine, W.V. A Way to Simplify Truth 
Functions. In American Mathematical 
Monthly, Volume 62, Number 9 (1955), 
pp. 627-631.     

Willard Van Orman Quine 
(1908-2000)  

Analytic philosopher and logician 

….. Quine never wrote on a computer, always 
preferring the 1927 Remington typewriter that he 
first used for his doctoral thesis. Because that 
project contained so many special symbols, he had 
to have the machine adjusted by removing the 
second period, the second comma and the question 
mark.  
''You don't miss the question mark?'' a reporter once 
asked him.  
''Well, you see,'' he replied, ''I deal in certainties.''  Source: New York Times, December 29, 2000  
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Two-level Logic Minimization :  
A Brief History 

• Quine’s ideas were refined 
by E. J. McCluskey 
– E. J. McCluskey, “Minimization of Boolean 

functions,” The Bell System Technical 
Journal, vol. 35, no 5, pp 1417-1444, 1956. 

• First algorithm suitable for 
implementation as a 
computer program 
 

http://www-crc.stanford.edu/users/ejm/McCluskey_Edward.html 

Edward J. McCluskey 
Professor of EE and CS 

Stanford University 

E. J. McCluskey 

J. Abraham 

N. K. Jha 

A. Raghunathan 
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Two-level Logic Minimization :  
A Brief History 

• The Q-M method (with minor improvements) remained the 
state-of-the-art in exact two-level minimization for over two 
decades 

• The increasing scale of integration (and circuit complexity) 
created a need for new (more efficient) algorithms 

• Renewed research effort on two-level minimization, leading to 
new algorithms and software programs 
– Hong, S. J. and Cain, R. G. and Ostapko, D. L, “Mini: A heuristic 

approach for logic minimization,” IBM Journal of Research and 
Development, 1974. 

– Brayton, R. K., Sangiovanni-Vincentelli, A. L., McMullen, C. T., and 
Hachtel, G. D. 1984 Logic Minimization Algorithms for VLSI Synthesis. 
Kluwer Academic Publishers.  (ESPRESSO-II) 

– M. R. Dagenais, V. K. Agarwal, and N. C. Rumin, “The McBOOLE logic 
minimizer. In Proceedings of the 22nd ACM/IEEE Conference on Design 
Automation, 1985.  (McBOOLE) 

– M. Bartholomeus and H. D. Man, “Prestol-11: Yet Another Logic M’ 
imizer for Programmed Logic Arrays”. Proc. Int. Symp. Circuits & Systems, 
June 1985.  (Prestol-11) 
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Two-level Logic Minimization :  
A Brief History 

• With the advent of new symbolic analysis 
and optimization techniques (BDDs), new 
advances in the 1990s brought exact two-
level minimization within the reach of larger 
circuits 

•  Heuristic techniques (ESPRESSO) still 
remain the de-facto standard 
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The Two-level Minimization Problem 

• Given a Boolean function, 
derive a minimum two-
level (SOP) implementation 

• What does “minimum” 
mean? 
– Fewest product terms 
– Fewest literals 

• Literal : Appearance of a 
variable in true or 
complemented form 

Example: 
 
f = ab’ + ab’c + abc’ + acd 
 
How many product terms? 
 
 
How many literals? 
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PLA implementation of two-level functions 

• Programmable Logic Array 
– Regular layout structure 

x 0 x 1 x 2 

AND 
plane 

x 0 x 1 

x 2 

Product terms 

OR 
plane 

f 0 f 1 
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PLA implementation of two-level functions 

• Pseudo-NMOS PLA : NOR-NOR implementation 

GND 
GND 

V DD 

V DD 

X 0 X 0 X 1 f 0 f 1 X 1 X 2 X 2 

AND-plane OR-plane 

# literals # product 
terms 
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Complex CMOS gate implementation 

• SOP expressions 
can also be directly 
translated into 
complex CMOS gate 
implementations 
– Not scalable beyond 

a few inputs 
– # transistors = ?? 

f = abc’d + a’bcd + a’b’c’ 

a 

b 

c’ 

d 

a’ 

b 

c 

d 

a’ 

b’ 

c’ 

f’ 

Vdd 

Gnd 

a b c’ d 

a’ b c d 

a’ b’ c’ 

26 



ECE 595Z: Digital Logic Systems Design Automation, Spring 2012 

Cubes, Implicants, and Covers (Recap) 

• Cube: Conjunction of literals 
– sub-space of a Boolean space Bn  

• Implicant of a function f: Cube 
that is contained in the on-set 
of f 

• Cover of a function f: Set of 
cubes that contains all 
minterms from the on-set of f, 
but does not contain any 
minterms from it’s off-set 
– Represents a SOP 

implementation (each cube is a 
product term) 

a 
b 

c 

F = {ab, bc, ac} 
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Incompletely Specified Functions 

• f : Bn → {0, 1, *} 
– where * represents a don’t 

care. 
• Partition of Bn into on-

set (f1), off-set(f0), and 
dc-set (f* or fDC) 

• Implicants and covers of 
f may include don’t care 
vertices 
– But not off-set vertices 

a 
b 

c 
on 
off 

don’t care 

a 
b 

c 
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Prime Implicants and Covers 

• An implicant (or cube) ci of f is 
prime if it is not contained in any 
other implicant of f 

for all ci* ⊃ ci 
 f + ci* ≠ f 

• Geometric interpretation: 
Expanding ci in any dimension 
will make it include an off-set 
vertex 

• Example: 
– ab is prime in f = ab + ac + bc 

• A cover is prime if all of its cubes 
are prime 

a 
b 

c 

{ab, bc, ac} 
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Irredundant Covers 

• Let C = {c1, c2, … ck} be a 
cover for f. 
– f = c1 + c2 + … ck 

• A cube ci is irredundant 
in C if C – ci is not a 
cover for f. 
– f – ci ≠ f 

• Example:  
– ab is irredundant in ab + ac + bc 

• A cover is irredundant if 
all of its cubes are 
irredundant 
 

a 
b 

c 

{ab, bc, ac} 

a 
b 

c 

Is this cover prime and 
irredundant? 
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Essential Implicants 

• A prime is essential if there is a 
minterm that is covered by that prime 
and no other prime of the function. 
 

a 
b 

c 

Which of these primes 
are essential? 
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Quine-McCluskey 

Theorem [Quine]: There exists a minimum 
cover for f that is a prime cover. 

• Why is this useful? 
– How many possible implicants for a function? 
– How many possible primes for a function? 

 
 
 

 

• Two major steps 
– Prime generation 
– Selection of a minimum subset of primes 

Classical Quine-McCluskey Algorithm: 
QM(f){ 
 P = ∪i pi; /* pi is a prime of f */ 
 C = minimum_cover(P) ; 
} 
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General Principle 

• Reduce the search space as 
much as possible even before 
you start the search! 
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Quine-McCluskey : Covering Table 

• How do we get the 
minimum sub-set of 
primes? 

• Formulate as a 
“covering” problem 

• Covering table 
provides the 
relationship between 
primes and on-set 
minterms 

Example of a Covering Table  
 
        p1 p2 p3 p4 p5 p6 p7 p8 
 
m1    1   0   0   0   0   0   0   0 
m2    1   1   0   0   0   0   0   1 
m3    0   1   1   0   0   0   0   0 
m4    0   0   1   1   1   0   0   0 
m5    0   0   0   0   1   0   1   1 
m6    0   0   0   0   0   1   1   0 
m7    0   0   0   0   1   1   0   1 
m8    0   0   0   0   1   1   1   0 

minterms 
primes 

1: minterm covered by prime 
0: minterm not covered by prime 
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Quine-McCluskey :  
Column Covering Problem 

• Find the minimum 
subset of columns 
that covers all rows. 
– A column j covers row i if 

T(i,j) = 1 
– NP-complete problem! 

• Brute force technique: 
– Consider all elements P 

• Each pi may be included 
or excluded in the cover. 

• 2|P| possibilities - 2|P| 
leaves in the search tree 

• Need to do better! 
 

p1 

p2 p2 

p3 p3 p3 p3 

in out 

in 

in in in 

in 

in 
out 

out 

out 

out 

out out 

Search tree for column covering 

35 


	Co-factors: Re-cap
	Quantification
	Universal Quantification / Consensus
	Universal Quantification / Consensus
	Quantification
	Existential Quantification / Smoothing
	Existential Quantification / Smoothing
	Properties of Consensus and Smoothing
	Quantification Examples
	Lectures 3-5 Summary
	Reading for Lectures #5-8
	Acknowledgments
	ECE 595Z�Digital Logic Systems Design Automation�Module 3 (Lectures 6-9): Two-level Logic Synthesis�Lecture 6
	Re-visiting a Classic Problem
	Two-level Logic Minimization : �A Brief History
	Two-level Logic Minimization : �A Brief History
	Two-level Logic Minimization : �A Brief History
	Two-level Logic Minimization : �A Brief History
	The Two-level Minimization Problem
	PLA implementation of two-level functions
	PLA implementation of two-level functions
	Complex CMOS gate implementation
	Cubes, Implicants, and Covers (Recap)
	Incompletely Specified Functions
	Prime Implicants and Covers
	Irredundant Covers
	Essential Implicants
	Quine-McCluskey
	General Principle
	Quine-McCluskey : Covering Table
	Quine-McCluskey : �Column Covering Problem

