
ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Co-factors: Re-cap

• A very useful operation on Boolean
functions
– Derived by fixing one of the variables to a

constant (0 or 1)
• Applications of co-factors

– Shannon’s expansion – a way to
recursively simplify or divide Boolean
functions

– Boolean difference (fx ⊕ fx’)
– Universal and Existential Quantification

1

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Quantification
• Two more functions of Shannon co-

factors
– fxi

. fxi’
 = 1 specifies when f = 1 independent

of the value of xi

 f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND
 f(x1 … xi-1, xi =0, xi+1 … xn) = 1
– Called Universal quantification or

Consensus

')(xx fffx ⋅=∀

Ca(f)

2

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Universal Quantification / Consensus

• Geometric interpretation using
Boolean hypercube representation

a
b

c

f = ab + bc + ac

Geometric interpretation: Keep vertices where f = 1 independent of a

fa = b + c
fa’ = bc

a
b

c

bcfa =∀)(

3

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Universal Quantification / Consensus

• Circuit interpretation

f

f

x1
x2
0

xn

x1
x2
1

xn

Cxi
(f)

4

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Quantification
• Two more functions of Shannon co-

factors
– fxi

. fxi’
 = 1 specifies when f = 1 independent

of the value of xi

 f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND
 f(x1 … xi-1, xi =0, xi+1 … xn) = 1
– Called Universal quantification or

Consensus

– fx + fx’ = 1 specifies when f = 1 for at least
one value of xi

 f(x1 … xi-1, xi =1, xi+1 … xn) = 1 OR
 f(x1 … xi-1, xi =0, xi+1 … xn) = 1
– Called Existential quantification or

Smoothing

')(xx fffx ⋅=∀

')(xx fffx +=∃

Ca(f)

Sa(f)

5

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Existential Quantification / Smoothing

• Geometric interpretation using
Boolean hypercube representation

a
b

c

f = ab + bc + ac

Geometric interpretation: If an off-set vertex has an on-set neighbor in
the a-dimension, move it into the on-set

fa = b + c
fa’ = bc

a
b

c

cbfa +=∃)(

6

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Existential Quantification / Smoothing

• Circuit interpretation

f

f

x1
x2
0

xn

x1
x2
1

xn

Sxi
(f)

7

http://upload.wikimedia.org/wikipedia/commons/4/4c/Or-gate-en.svg�

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Properties of Consensus and Smoothing
• Can be applied w.r.t.

multiple variables
– Cxy(f) = Cx(Cy(f)) = Cy(Cx(f))

– Sxy(f) = Sx(Sy(f)) = Sy(Sx(f))

• Containment properties
– Consensus of a function f

w.r.t. variable x is
contained in f

– Smoothing of a function f
w.r.t. variable x contains f

)()(fxffx ∃⊆⊆∀

)()(fSffC xx ⊆⊆

Hint: In this context, think of
a function in terms of it’s on-set

8

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Quantification Examples

• Examples:

Full
Adder

a
b
cin cout

s

=∀a(s)

=∃)a(cout

0
1

s

a

b
out

=∀ (s)cin

=∃)(cc outin

=∀a(out)

=∃ a(out)

=∀s(out)

=∃s(out)

9

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Lectures 3-5 Summary

• Boolean Algebra: Quick Review
• Advanced Boolean Algebra

– Boolean spaces and functions
– Representations of Boolean functions
– Operations on Boolean functions
– Co-factors and their applications

• Shannon’s expansion
• Boolean difference
• Existential and Universal Quantification

– a.k.a., Smoothing and Consensus

12

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Reading for Lectures #5-8

• Next Topic: Two-level synthesis
– De Micheli, Chapter 7.1-7.4, 7.7
– Hachtel & Somenzi, Chapter 4, Chapter 5

13

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Acknowledgments

• Prof. Sharad Malik, Princeton
• Prof. Rob Rutenbar, CMU
• Prof. Maciej Ciesielski, U. Mass.

14

© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

ECE 595Z
Digital Logic Systems Design Automation

Module 3 (Lectures 6-9): Two-level Logic Synthesis
Lecture 6

Anand Raghunathan
MSEE 348

raghunathan@purdue.edu

17

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Re-visiting a Classic Problem

• What you know from your Digital
Design class
– Truth tables and Karnaugh maps
– How to manually create minimal two-level

(Sum-of-Products) implementations
• What we will discuss here

– How the same thing can be done
automatically

– Computational strategies and scalability

18

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Two-level Logic Minimization :
A Brief History

• Initial ideas from
Willard Quine
– Quine, W.V. The Problem of Simplifying

Truth Functions. In American
Mathematical Monthly, Volume 59,
Number 8 (1952), pp. 521-531.

– Quine, W.V. A Way to Simplify Truth
Functions. In American Mathematical
Monthly, Volume 62, Number 9 (1955),
pp. 627-631.

Willard Van Orman Quine
(1908-2000)

Analytic philosopher and logician

….. Quine never wrote on a computer, always
preferring the 1927 Remington typewriter that he
first used for his doctoral thesis. Because that
project contained so many special symbols, he had
to have the machine adjusted by removing the
second period, the second comma and the question
mark.
''You don't miss the question mark?'' a reporter once
asked him.
''Well, you see,'' he replied, ''I deal in certainties.'' Source: New York Times, December 29, 2000

19

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Two-level Logic Minimization :
A Brief History

• Quine’s ideas were refined
by E. J. McCluskey
– E. J. McCluskey, “Minimization of Boolean

functions,” The Bell System Technical
Journal, vol. 35, no 5, pp 1417-1444, 1956.

• First algorithm suitable for
implementation as a
computer program

http://www-crc.stanford.edu/users/ejm/McCluskey_Edward.html

Edward J. McCluskey
Professor of EE and CS

Stanford University

E. J. McCluskey

J. Abraham

N. K. Jha

A. Raghunathan

20

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Two-level Logic Minimization :
A Brief History

• The Q-M method (with minor improvements) remained the
state-of-the-art in exact two-level minimization for over two
decades

• The increasing scale of integration (and circuit complexity)
created a need for new (more efficient) algorithms

• Renewed research effort on two-level minimization, leading to
new algorithms and software programs
– Hong, S. J. and Cain, R. G. and Ostapko, D. L, “Mini: A heuristic

approach for logic minimization,” IBM Journal of Research and
Development, 1974.

– Brayton, R. K., Sangiovanni-Vincentelli, A. L., McMullen, C. T., and
Hachtel, G. D. 1984 Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers. (ESPRESSO-II)

– M. R. Dagenais, V. K. Agarwal, and N. C. Rumin, “The McBOOLE logic
minimizer. In Proceedings of the 22nd ACM/IEEE Conference on Design
Automation, 1985. (McBOOLE)

– M. Bartholomeus and H. D. Man, “Prestol-11: Yet Another Logic M’
imizer for Programmed Logic Arrays”. Proc. Int. Symp. Circuits & Systems,
June 1985. (Prestol-11)

21

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Two-level Logic Minimization :
A Brief History

• With the advent of new symbolic analysis
and optimization techniques (BDDs), new
advances in the 1990s brought exact two-
level minimization within the reach of larger
circuits

• Heuristic techniques (ESPRESSO) still
remain the de-facto standard

22

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

The Two-level Minimization Problem

• Given a Boolean function,
derive a minimum two-
level (SOP) implementation

• What does “minimum”
mean?
– Fewest product terms
– Fewest literals

• Literal : Appearance of a
variable in true or
complemented form

Example:

f = ab’ + ab’c + abc’ + acd

How many product terms?

How many literals?

23

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

PLA implementation of two-level functions

• Programmable Logic Array
– Regular layout structure

x 0 x 1 x 2

AND
plane

x 0 x 1

x 2

Product terms

OR
plane

f 0 f 1

24

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

PLA implementation of two-level functions

• Pseudo-NMOS PLA : NOR-NOR implementation

GND
GND

V DD

V DD

X 0 X 0 X 1 f 0 f 1 X 1 X 2 X 2

AND-plane OR-plane

literals # product
terms

25

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Complex CMOS gate implementation

• SOP expressions
can also be directly
translated into
complex CMOS gate
implementations
– Not scalable beyond

a few inputs
– # transistors = ??

f = abc’d + a’bcd + a’b’c’

a

b

c’

d

a’

b

c

d

a’

b’

c’

f’

Vdd

Gnd

a b c’ d

a’ b c d

a’ b’ c’

26

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Cubes, Implicants, and Covers (Recap)

• Cube: Conjunction of literals
– sub-space of a Boolean space Bn

• Implicant of a function f: Cube
that is contained in the on-set
of f

• Cover of a function f: Set of
cubes that contains all
minterms from the on-set of f,
but does not contain any
minterms from it’s off-set
– Represents a SOP

implementation (each cube is a
product term)

a
b

c

F = {ab, bc, ac}

27

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Incompletely Specified Functions

• f : Bn → {0, 1, *}
– where * represents a don’t

care.
• Partition of Bn into on-

set (f1), off-set(f0), and
dc-set (f* or fDC)

• Implicants and covers of
f may include don’t care
vertices
– But not off-set vertices

a
b

c
on
off

don’t care

a
b

c

28

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Prime Implicants and Covers

• An implicant (or cube) ci of f is
prime if it is not contained in any
other implicant of f

for all ci* ⊃ ci
 f + ci* ≠ f

• Geometric interpretation:
Expanding ci in any dimension
will make it include an off-set
vertex

• Example:
– ab is prime in f = ab + ac + bc

• A cover is prime if all of its cubes
are prime

a
b

c

{ab, bc, ac}

29

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Irredundant Covers

• Let C = {c1, c2, … ck} be a
cover for f.
– f = c1 + c2 + … ck

• A cube ci is irredundant
in C if C – ci is not a
cover for f.
– f – ci ≠ f

• Example:
– ab is irredundant in ab + ac + bc

• A cover is irredundant if
all of its cubes are
irredundant

a
b

c

{ab, bc, ac}

a
b

c

Is this cover prime and
irredundant?

30

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Essential Implicants

• A prime is essential if there is a
minterm that is covered by that prime
and no other prime of the function.

a
b

c

Which of these primes
are essential?

31

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Quine-McCluskey

Theorem [Quine]: There exists a minimum
cover for f that is a prime cover.

• Why is this useful?
– How many possible implicants for a function?
– How many possible primes for a function?

• Two major steps
– Prime generation
– Selection of a minimum subset of primes

Classical Quine-McCluskey Algorithm:
QM(f){
 P = ∪i pi; /* pi is a prime of f */
 C = minimum_cover(P) ;
}

32

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

General Principle

• Reduce the search space as
much as possible even before
you start the search!

33

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Quine-McCluskey : Covering Table

• How do we get the
minimum sub-set of
primes?

• Formulate as a
“covering” problem

• Covering table
provides the
relationship between
primes and on-set
minterms

Example of a Covering Table

 p1 p2 p3 p4 p5 p6 p7 p8

m1 1 0 0 0 0 0 0 0
m2 1 1 0 0 0 0 0 1
m3 0 1 1 0 0 0 0 0
m4 0 0 1 1 1 0 0 0
m5 0 0 0 0 1 0 1 1
m6 0 0 0 0 0 1 1 0
m7 0 0 0 0 1 1 0 1
m8 0 0 0 0 1 1 1 0

minterms
primes

1: minterm covered by prime
0: minterm not covered by prime

34

ECE 595Z: Digital Logic Systems Design Automation, Spring 2012

Quine-McCluskey :
Column Covering Problem

• Find the minimum
subset of columns
that covers all rows.
– A column j covers row i if

T(i,j) = 1
– NP-complete problem!

• Brute force technique:
– Consider all elements P

• Each pi may be included
or excluded in the cover.

• 2|P| possibilities - 2|P|
leaves in the search tree

• Need to do better!

p1

p2 p2

p3 p3 p3 p3

in out

in

in in in

in

in
out

out

out

out

out out

Search tree for column covering

35

	Co-factors: Re-cap
	Quantification
	Universal Quantification / Consensus
	Universal Quantification / Consensus
	Quantification
	Existential Quantification / Smoothing
	Existential Quantification / Smoothing
	Properties of Consensus and Smoothing
	Quantification Examples
	Lectures 3-5 Summary
	Reading for Lectures #5-8
	Acknowledgments
	ECE 595Z�Digital Logic Systems Design Automation�Module 3 (Lectures 6-9): Two-level Logic Synthesis�Lecture 6
	Re-visiting a Classic Problem
	Two-level Logic Minimization : �A Brief History
	Two-level Logic Minimization : �A Brief History
	Two-level Logic Minimization : �A Brief History
	Two-level Logic Minimization : �A Brief History
	The Two-level Minimization Problem
	PLA implementation of two-level functions
	PLA implementation of two-level functions
	Complex CMOS gate implementation
	Cubes, Implicants, and Covers (Recap)
	Incompletely Specified Functions
	Prime Implicants and Covers
	Irredundant Covers
	Essential Implicants
	Quine-McCluskey
	General Principle
	Quine-McCluskey : Covering Table
	Quine-McCluskey : �Column Covering Problem

