
© 2012 Anand Raghunathan ECE 595Z: Digital Systems Design Automation, Spring 2012

ECE 595Z
Digital Logic Systems Design Automation

Module 3 (Lectures 6-9): Two-level Logic Synthesis
Lecture 8

Anand Raghunathan
MSEE 348

raghunathan@purdue.edu

1

ECE 595Z: Digital Systems Design Automation, Spring 2012

Lecture #8 Outline

• Wrapup: Selecting a subset of primes
• Generating primes
• Scaling the QM algorithm

2

ECE 595Z: Digital Systems Design Automation, Spring 2012

Putting it Together : Branch and Bound
with MIS Computation

BB(T, best_soln, current_soln) {
 Reduce(T, current_soln);
 if(T is empty) {
 if(cost(current_soln) < cost(best_soln)) {
 best_soln = current_soln;
 return(best_soln);
 } else {
 return(NULL);
 }
 }
 L = compute_MIS_size(T);
 if(L + cost(current_soln) ≥ cost(best_soln)) {
 return(NULL);
 }
 j = choose_column(T);
 soln1 = BB(T, best_soln, current_soln ∪ j);
 if(cost(soln1) == L) return(soln1);
 soln0 = BB(T – j, best_soln, current_soln);
 return(lower_cost(soln1, soln0));
}

Remove empty rows and
columns, apply pruning
techniques (essential,
equivalence & dominance)

Reached leaf of search
tree. Keep solution if it
is better than the best
seen thus far.

Evaluate bounding
criterion and discard
part of the search tree if
possible.
Branching variable

Recursive calls to
explore two cases –
either the column is
selected or it is not

3

ECE 595Z: Digital Systems Design Automation, Spring 2012

Branch and Bound with MIS
Computation : Examples

p1 p2 p3 p4 p5 p6
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1

Example 1
p1 p2 p3 p4 p5 p6

1 1 1
2 1 1 1
3 1 1
4 1 1 1
5 1 1
6 1 1
7 1 1

Example 2

4

ECE 595Z: Digital Systems Design Automation, Spring 2012

Question
• Recall the CNF formula representation of the covering

table used in Petrick’s method?
• What is the equivalent of branching in the branch

and bound algorithm
– Think in terms of applying operations that we have learnt on

the CNF formula

P = (P1+P2)(P3+P4)
(P1+P3)(P5+P6)
(P2+P5)(P4+P6)

p1 p2 p3 p4 p5 p6
 a’c b’c a’b bc’ ab’ ac’

m3 1 1
m5 1 1
m7 1 1
m9 1 1

m11 1 1
m13 1 1

Example:

p1
in out

Branch p1 in

Branch p3 in

5

ECE 595Z: Digital Systems Design Automation, Spring 2012

Using Iterative Independent Sets for
Heuristic Prime Selection

Let I = { I1, I2 … Ik } be an independent set of
rows

1. Choose column j which covers Ii ∈ I and the most rows of
T.

2. Put j → J (set of columns in the cover)
3. Eliminate all rows covered by column j
4. I ← I - Ii
5. Go to 1 if | I | > 0
6. If T is empty, then done

 (if this is reached after processing the first independent set, we
have the guaranteed minimum solution)

7. If T is not empty, choose a new independent set of T and
go to 1

• Sub-optimal in general
6

ECE 595Z: Digital Systems Design Automation, Spring 2012

Summary : Selecting a Subset of Primes

• Four approaches discussed in class
Approach Advantages Disadvantages
Petrick’s
method

Simple, exact. Generates all solutions. Very
likely to be exponential.

MIN-SAT Exact. Leverage
advances in SAT
solvers.

Solvers may not exploit full
knowledge of the covering
problem. Exponential in the
worst case.

Branch and
Bound

Exact. Incorporate
problem knowledge
through branching and
bounding heuristics.

Exponential in the worst case.

Iterative
Independent
Sets

Polynomial time (if
approximate MIS
algorithm is used)

Sub-optimal.

Can you think of any improved heuristics?
7

ECE 595Z: Digital Systems Design Automation, Spring 2012

QM : Generation of Primes

• Need to generate all primes 

– Tabular Method
– Iterated consensus

8

ECE 595Z: Digital Systems Design Automation, Spring 2012

Generating Primes : Tabular Method

• Start with minterm
canonical form of F

• Group pairs of
adjacent minterms
into cubes

• Repeat merging of
cubes until no more
merging possible;
mark (√) and remove
all covered cubes.

• Result: set of primes
of f.

Example:
F = x’ y’ + w x y + x’ y z’ + w y’ z

0

1

2

3

4

w’ x’ y’ z’

w’ x’ y’ z
w’ x’ y z’
w x’ y’ z’

w x’ y’ z
w x’ y z’

w x y z’
w x y’ z

w x y z

9

ECE 595Z: Digital Systems Design Automation, Spring 2012

Generating Primes : Tabular Method

w’ x’ y’ z’ √

w’ x’ y’ z √
w’ x’ y z’ √
w x’ y’ z’ √

w x’ y’ z √
w x’ y z’ √
w x y z’ √
w x y’ z √

w x y z √

w’ x’ y’ √
w’ x’ z’ √
x’ y’ z’ √

x’ y’ z √
x’ y z’ √
w x’ y’ √
w x’ z’ √

w y’ z
w y z’
w x y
w x z

x’ y’
x’ z’

F = x’ y’ + w x y + x’ y z’ + w y’ z

10

ECE 595Z: Digital Systems Design Automation, Spring 2012

Iterated Consensus : Motivation

• Problems with Tabular Method
– Need to start off with all minterms

• Likely to be exponential

• Better approach
– Given a cover for F (set of cubes),

generate the set of all primes
– A technique called iterated consensus

can be used for this purpose

11

ECE 595Z: Digital Systems Design Automation, Spring 2012

Distance Between Cubes

• The distance, δ,
between two cubes is
the number of
dimensions the cubes
differ on.
– Differ : one cube

has a “1” and the
other has a “0”

– δ is the number of
φ entries in a
bitwise intersection
of the cube vectors.

c1 x

y

z

c2

c3

c4 c5

Vector representation of cubes:
c1 = [- 0 0]; c2 = [0 0 -];
c3 = [1 1 -]; c4 = [- 1 1]; c5 = [0 1 1]

δ(c1,c2) =
δ(c1,c3) =
δ(c1,c4) =
δ(c4,c5) =

Example

12

ECE 595Z: Digital Systems Design Automation, Spring 2012

Consensus

• The consensus
between two cubes, c1
and c2 is defined as:
– If δ(c1, c2) > 1
 c1 c2 = φ
– If δ(c1, c2) = 0
 c1  c2 = c1 ∩ c2
– If δ(c1, c2) = 1

• If c1[k] ∩ c2[k] ≠ φ
 (c1  c2) [k] =
 c1[k] ∩ c2[k]
• If c1[k] ∩ c2[k] = φ

(c1  c2) [k] = -

c1 x

y

z

c2

c3

c4 c5

Vector representation of cubes:
c1 = [- 0 0]; c2 = [0 0 -];
c3 = [1 1 -]; c4 = [- 1 1]; c5 = [0 1 1]

c1  c2 =
c1  c3 =
c1  c4 =

Example

13

ECE 595Z: Digital Systems Design Automation, Spring 2012

Iterated Consensus

• Starts with a cover and generates new implicants
through consensus till no more implicants can be
generated.

• SCC_minimal checks for single cube containment

– If a cube c1 is contained in some other cube c2 in C, then
c1 is deleted.

Theorem [Quine]: Iterated Consensus generates all
primes of a function.

iterated_consensus(C) {
 do {

 foreach (ci, cj ε C) {
C = C ∪ (ci  cj);
C = SCC_minimal(C);

}
 } until (no change in C);

}

14

ECE 595Z: Digital Systems Design Automation, Spring 2012

Iterated Consensus : Example

c1 = [11--]
c2 = [-01-]
c3 = [-111]

F(x1,x2,x3,x4) = {x1x2, x2’x3, x2x3x4}
Example:

iterated_consensus(C) {
 do {
 foreach (ci, cj ε C) {
 C = C ∪ (ci  cj);
 C = SCC_minimal(C);
 }
 } until (no change in C);
}

15

ECE 595Z: Digital Systems Design Automation, Spring 2012

Summary : Exact two-level minimization

• Solving the cyclic core
– Petrick’s method
– MIN-SAT
– Branch and bound

• Maximal independent set

– Iterative independent set

• Generating primes
– Tabular method
– Iterated consensus

17

ECE 595Z: Digital Systems Design Automation, Spring 2012

Quine-McCluskey: Scaling Challenges

• No. of primes may be large (worst case 3n/n)
• Covering problem is NP-complete, so exact

algorithms may take exponential time in the
worst case

• No. of minterms is likely to be large (2n)

Covering Table

3n/n

minterms

primes

2n

18

ECE 595Z: Digital Systems Design Automation, Spring 2012

Required Reading: Two-level
minimization

• Richard Rudell’s PhD thesis, Chapter 2
(pages 9-31)
– Posted on blackboard
– Will be helpful in reinforcing the concepts we

speak about in class

19

ECE 595Z: Digital Systems Design Automation, Spring 2012

Unate Functions

• Analogy to integer and
real-valued functions
– Monotone functions

• A logic function f is
positive unate in variable
x, if increasing x from 0
to 1 cannot decrease f
from 1 to 0.

• A logic function f is
negative unate in
variable x, if increasing x
from 0 to 1 cannot
increase f from 0 to 1.

f(x)

x

)()(+− ≤ xfxf
Monotone increasing

x

f(x)

)()(+− ≥ xfxf
Monotone decreasing

20

ECE 595Z: Digital Systems Design Automation, Spring 2012

Unate Functions : Examples

• A logic function f is
positive unate in variable
x, if increasing x from 0
to 1 cannot decrease f
from 1 to 0.

• A logic function f is
negative unate in
variable x, if increasing x
from 0 to 1 cannot
increase f from 0 to 1.

• A function is unate if it is
unate in all its variables.

• A function that is not
unate is binate

a
b

c

x

y

z

f(a,b,c)

f is ______ in a, _______ in b,
_______ in c

g(x,y,z)

g is ______ in x, _______ in y,
_______ in z

21

	ECE 595Z�Digital Logic Systems Design Automation�Module 3 (Lectures 6-9): Two-level Logic Synthesis�Lecture 8
	Lecture #8 Outline
	Putting it Together : Branch and Bound with MIS Computation
	Branch and Bound with MIS Computation : Examples
	Question
	Using Iterative Independent Sets for Heuristic Prime Selection
	Summary : Selecting a Subset of Primes
	QM : Generation of Primes
	Generating Primes : Tabular Method
	Generating Primes : Tabular Method
	Iterated Consensus : Motivation
	Distance Between Cubes
	Consensus
	Iterated Consensus
	Iterated Consensus : Example
	Summary : Exact two-level minimization
	Quine-McCluskey: Scaling Challenges
	Required Reading: Two-level minimization
	Unate Functions
	Unate Functions : Examples

