
© 2012 Anand Raghunathan ECE 595Z: Digital Systems Design Automation, Spring 2012

ECE 595Z
Digital Logic Systems Design Automation

Module 3 (Lectures 6-9): Two-level Logic Synthesis
Lecture 9

Anand Raghunathan
MSEE 348

raghunathan@purdue.edu

1

ECE 595Z: Digital Systems Design Automation, Spring 2012

Quine-McCluskey: Scaling Challenges

• No. of primes may be large (worst case 3n/n)
• Covering problem is NP-complete, so exact

algorithms may take exponential time in the
worst case

• No. of minterms is likely to be large (2n)

Covering Table

3n/n

minterms

primes

2n

2

ECE 595Z: Digital Systems Design Automation, Spring 2012

Unate Functions : Recap

• A logic function f is
positive unate in variable
x, if increasing x from 0
to 1 cannot decrease f
from 1 to 0.

• A logic function f is
negative unate in
variable x, if increasing x
from 0 to 1 cannot
increase f from 0 to 1.

• A function is unate if it is
unate in all its variables.

• A function that is not
unate is binate

a
b

c

x

y

z

f(a,b,c)

f is ______ in a, _______ in b,
_______ in c

g(x,y,z)

g is ______ in x, _______ in y,
_______ in z

3

ECE 595Z: Digital Systems Design Automation, Spring 2012

• A cover F is positive
unate in xi iff xi’ ∉ cj
for all cubes cj ∈ F
– No 0’s in position i for any

cube in the cover

• A cover F is negative
unate in xi iff xi ∉ cj
for all cubes cj ∈ F
– No 1’s in position i for any

cube in the cover

• A cover is unate if it is
unate in all its
variables.

Unate Covers

F = {ab, a’c’, bc’}

a b c
1 1 –
0 – 0
– 1 0

F is ______ in a, _______ in b,
_______ in c

4

ECE 595Z: Digital Systems Design Automation, Spring 2012

Unate Functions == Unate Covers?

Theorem: If a unate cover F exists for
function f, then f is unate.

• A unate function may have a non-
unate cover.

Example:

5

ECE 595Z: Digital Systems Design Automation, Spring 2012

Results for Unate Functions
Theorem: The complement of a unate function is

unate.
Theorem: The cofactors of a unate function with

respect to any variable x and x’ are unate.
Theorem: A unate cover is a tautology if and only if it

contains a row of all –’s.
Theorem: A prime cover of a unate function is unate.
Theorem: Every prime of a unate function is

essential.
Theorem: If a unate cover is SCC (single cube

containment) minimal, it is a prime cover.
 • Many operations are greatly simplified for unate functions
• Tautology check, Prime generation, Complement, …

6

ECE 595Z: Digital Systems Design Automation, Spring 2012

Unate Recursive Paradigm (URP)
• What about binate

functions?
– Many functions in

practice are binate

• Use Shannon’s
decomposition to
recursively divide-
and-conquer binate
functions
– Stop at Unate “leaves”

and apply efficient
techniques to perform
desired operation

– Merge results into
desired result for
original function

a

c b

merge

Main idea: Operation on unate leaf is
computationally less complex

7

ECE 595Z: Digital Systems Design Automation, Spring 2012

URP for Tautology Checking

• Input: Cover representing f
• Output: Yes/No (is f a tautology or not?)
• Theorem: f is a tautology iff fx and fx’ are both

tautologies
• Theorem: A unate cover is a tautology iff it

contains a tautology cube, i.e., row of all –’s.
• Suggests a recursive (divide-and-conquer)

approach for tautology checking
• What do we need to know?

– How to split (which variable to select?)
– How to decide when to stop splitting?
– How to merge the results?

f = 1?

fx = 1? fx’ = 1?

y/n y/n

8

ECE 595Z: Digital Systems Design Automation, Spring 2012

URP for Tautology Checking

• Example F = {ab, ac, ab’c’, a’}

9

ECE 595Z: Digital Systems Design Automation, Spring 2012

General Principle

• Look for special cases of a
problem that can be solved
efficiently, try to reduce other
cases to them.

10

ECE 595Z: Digital Systems Design Automation, Spring 2012

A More Complex Application of the
Unate Recursive Paradigm

• Recall the challenges with the exact two-level
minimization techniques that we have discussed?
– No. of primes may be large (worst case 3n/n)
– Covering problem is NP-complete, so the heuristics may

take exponential time in the worst case
– No. of minterms is likely to be large (2n)

Covering Table

3n/n

minterms

primes

2n

11

ECE 595Z: Digital Systems Design Automation, Spring 2012

Can we Reduce the Size of the Covering
Table by Construction?

• Observation: In practice, there are usually
several sets of identical rows.
– Each of these represents a set of minterms covered by

the same set of primes.
– If only we could just construct one row for each set to

start with (rather than construct a large table and then
try to reduce it)

• Idea: Start with each cube in a cover for F, and
break it down into groups of minterms that will
have identical rows in the covering table
 Cube in the

original cover
M1

M7

M3

M2

M4
M6

M5

A set of on-set minterms
with identical rows in

the covering table

12

ECE 595Z: Digital Systems Design Automation, Spring 2012

Covering Table Compression

Theorem: A cover C covers a cube c if and only if Cc ≡
1.

• Now, let P be the set of all primes, and let c be a cube
in the original function.

• Clearly Pc ≡ 1.
– We just need to investigate which combinations of these

primes is responsible for this tautology, i.e. for covering this
cube.

– Construct the covering table as a by-product of this
tautology check

13

ECE 595Z: Digital Systems Design Automation, Spring 2012

Covering Table Compression

• Build the recursive
tautology tree for Pc.
– Tag the primes that are

left at any node.
– Stop when you get a

cover that has ALL rows
of all –’s

– Each leaf of this tree is a
row of the compressed
covering table.

– The tags of the primes at
the leaf is the set of
primes that covers the
row in the covering
table.

g

gx1’ gx1

gx1’ x2’ gx1’ x2
gx1 x2

x1’

x2
x2 x2’ x2’

x1

gx1x2 ’

- - - (1)
- - - (4)
- - - (6)

- - - (2)
- - - (6) - - - (3)

- - - (5)
- - - (6)

g = Pc

123456
100101
…
010001
001011

Covering Table for c

Each row
corresponds
to a leaf of the
tautology tree

• Repeat for each cube in the cover
14

ECE 595Z: Digital Systems Design Automation, Spring 2012

Summary : Exact Two-level
Minimization

• Generating primes
– Tabular method
– Iterated consensus

• Generating a compressed covering table
– Unate Recursive Paradigm

• Solving the cyclic core
– Petrick’s method
– MIN-SAT
– Branch and bound

• Maximal independent set

15

ECE 595Z: Digital Systems Design Automation, Spring 2012

Heuristic Two-Level Minimization

• Exact minimization (Quine McCluskey)
often too expensive

• Approximate (heuristic) techniques don’t
guarantee the optimal solution, but strive
for close to optimal results.

• We will focus on ESPRESSO-II, a two-level
minimizer developed at U.C. Berkeley
– Richard Rudell, Robert Brayton, and Alberto

Sangiovanni-Vincentelli

16

ECE 595Z: Digital Systems Design Automation, Spring 2012

Key Developments in Heuristic Two-level
Minimization

• MINI logic minimizer developed at IBM in the mid-1970’s
– S. J. Hong, R. G. Cain, and D. L. Ostapko, “MINI: A Heuristic

Approach for Logic Minimization”, IBM Journal of R&D, Sept.
1974.

• PRESTO logic minimizer developed at Tektronix in late 1970’s
– D. W. Brown, “A State-Machine Synthesizer -- SMS”, Design

Automation Conference, pp. 301-304, June 1981.

• ESPRESSO-I started off as an effort to implement these
algorithms in a unified SW framework
– R. K. Brayton, G. D. Hachtel, L. Hemachandra, A. R. Newton and

A. L. Sangiovanni-Vincentelli, “A Comparison of Logic
Minimization Strategies Using ESPRESSO: An APL Program
Package for Partitioned Logic Minimization”, Int. Symp. On
Circuits and Systems, pp. 42-48, May 1982.

 17

ECE 595Z: Digital Systems Design Automation, Spring 2012

Key Developments in Heuristic Two-level
Minimization

• Insights gained during implementation of
ESPRESSO-I led to development of improved
algorithms and ESPRESSO-II
– R. K. Brayton, G. D. Hachtel, C. D. McMullen, and A. L.

Sangiovanni-Vincentelli, “Logic Minimization Algorithms
for VLSI”, Kluwer Academic Publishers, 1984.

• Implemented by Richard L. Rudell for his M.S.
thesis project at U. C. Berkeley
– Extended to multi-valued minimization

18

ECE 595Z: Digital Systems Design Automation, Spring 2012

Degrees of Optimality in Two-level
Minimization

• Cover > Prime Cover > Irredundant
Prime Cover > Minimum Prime Cover

Minimum
Prime All

Covers

Difficult to guarantee this, so
aim for this instead

Local
minimum

Global
minimum

Cost

Solutions

19

Prime &
Irredundant

Local vs. Global optima

ECE 595Z: Digital Systems Design Automation, Spring 2012

Strategy: Iterative Improvement

• Use weaker optimization steps, but iterate
to obtain successive improvements

Generate
cover of all

primes

Select
optimum
subset of
primes

Exact Two-level Minimization Approximate Two-level Minimization

Generate
some cover
of primes

Select
irredundant

subset of
cover

Iterate

20

	ECE 595Z�Digital Logic Systems Design Automation�Module 3 (Lectures 6-9): Two-level Logic Synthesis�Lecture 9
	Quine-McCluskey: Scaling Challenges
	Unate Functions : Recap
	Unate Covers
	Unate Functions == Unate Covers?
	Results for Unate Functions
	Unate Recursive Paradigm (URP)
	URP for Tautology Checking
	URP for Tautology Checking
	General Principle
	A More Complex Application of the Unate Recursive Paradigm
	Can we Reduce the Size of the Covering Table by Construction?
	Covering Table Compression
	Covering Table Compression
	Summary : Exact Two-level Minimization
	Heuristic Two-Level Minimization
	Key Developments in Heuristic Two-level Minimization
	Key Developments in Heuristic Two-level Minimization
	Degrees of Optimality in Two-level Minimization
	Strategy: Iterative Improvement

