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Lecture #14: Re-cap 
• Optimization problems involved in multi-level 

synthesis are MUCH more computationally 
challenging than two-level synthesis 

• Iterative improvement strategy: Transformations 
iteratively applied to Boolean network 
– Decomposition, Elimination, Extraction, Simplification 
– Common operation: Identifying factors 
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Multi-level synthesis operations: 
Summary 

• Global 
– Extraction 

• Find common factors for two or more nodes 

– Elimination / Collapsing 
• Collapse a node into it’s fan-outs 

– Re-substitution 
• Re-substitute node into other nodes in the network 

through factoring 

• Local 
– Decomposition 

• Decompose a node through factoring 
– Simplification 

• Use ESPRESSO to simplify the expression inside a 
node 
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Factoring 

• Common operation involved in multi-
level network transformations 

• Two models (classes of techniques) 
– Algebraic 
– Boolean 
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Algebraic Model for Boolean Expressions 
• Think of Boolean expressions as 

polynomials in real valued variables 
• Only use a sub-set of laws of Boolean 

algebra that apply to Real numbers and 
polynomials 
– Do not use: 

• x + x’ = 1 
• x.x’ = 0 
• x + x = x 
• x.x = x 
• x + y.z = (x + y)(x + z) 
• x + x.y = x 
• x.(x + y) = x 
• De Morgan’s law 
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Algebraic Expressions and Operations 
• Definition: An SOP expression f is an algebraic expression if no 

single cube contains another (minimal with respect to single cube 
containment) 

 Examples:  
   ab + ac  is an algebraic expression  
 a + ab  is NOT an algebraic expression (a contains ab) 
  
Treat a and a’ as DIFFERENT variables 
 

• Definition: fg is an algebraic product if f and g are algebraic 
expressions and have disjoint support (that is, they have no variables 
in common) 

 

 Examples:  
(a+b)(c+d) = ac+ad+bc+bd   is an algebraic product 
(a+b)(a+d) = a + bd is NOT an algebraic product 
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Algebraic Division 
• Boolean algebra does not 

have a multiplicative inverse 
(x.x-1 = 1) 
– No division operation 

• However, we can define the 
concept of algebraic division 
– Given two expressions f and p, 

p is a divisor of f if there are 
expressions q and r such that 

• f = p⋅q + r 
• p.q is an algebraic product 
• q : quotient, r : remainder 

• If remainder is 0, the 
quotient and divisor are 
exact factors 
 

Example: 
f = abc + abd + h 

f = ab(c + d) + h 
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Algebraic Division : Examples 
 

Divisor Quotient Remainder Exact 
Factor? 

ac + ad + 
bc + bd + e 
a + b 
c + d 
a 
b 
c 
d 
e 
1 

Example: 
f = ac + ad + bc + bd + e 
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Algebraic Division 

• How do we do it systematically (an 
algorithm)? 
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Algebraic Division Algorithm : Weak Division 
• Simple algorithm that implements algebraic 

division 
– Walk through all pairs of cubes in F and G 

ALGORITHM WEAK_DIVISION(F,G) { 
  // G={g1,g2,...}, F=(f1,f2,...} 
  foreach gi∈ G { 
    Vgi=∅ 
 foreach fj ∈ F { 
      if(fj contains all literals of gi) { 
        vij=fj - literals of gi 
    Vgi=Vgi ∪ vij 
      } 
    }   
  } 

  H = ∩iVgi 
   R = F - GH 
  return (H,R); 
} 

Note: Use algebraic 
           interpretation! 
 
abc contains ab 
 
abc – literals of ab = c 
 
c ∪ d = c + d 
 
(a + b + c) ∩ (b + c + d) 
                       =  b + c 
 
(abc + abd + e ) –  
            (abc + abd) = e 

F, G are SOP 
expressions 
(set of cubes) 
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Weak Division : Example 

 
F = axc + axd + axe + bc + bd + e 
G = ax + b 
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Algebraic Division and Factoring 

• Common Divisors of multiple 
functions can be used for factoring 

f1 = … 

f2 = … 

f3 = … 

f4 = … 

f1 = f0.q1 + 
r1 

f2 = f0.q2 + 
r2 

f3 = f0.q3 + 
r3 

f4 = … 

f0 = … 
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Finding Common Divisors (Efficiently) 

• Recall that divisors are also SOP 
expressions 
– Case 1 : Divisors are a single cube 

• e.g., abc 

– Case 2 : Divisors consist of multiple cubes 
• e.g., a + c’ + bd 

 

• Key idea: Use of Kernels and Co-kernels 
to identify divisors 

R. K. Brayton and C. McMullen, “The decomposition and factorization 
of Boolean expressions,” Proc. ISCAS, 1982. 
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Kernels 
• Primary divisors of a Boolean expression : 

Quotients obtained by dividing function 
with a single cube 
– D(F) = {F/c | c is a cube} denotes the set of 

primary divisors 
 

• Kernels of a Boolean expression are it’s 
cube-free primary divisors 
– K(F) = {g | g ∈ D(F) and g is cube-free} denotes 

the set of kernels 
 

• Cube-free : You cannot factor out a single-
cube divisor that leaves no remainder 
– e.g., bc + bde is NOT cube free, a+ b is cube free 

14 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Kernels 
• Intuitively, kernels result from dividing the function 

by “maximal” single-cube divisors 
– If quotient is not cube-free, you can always include 

additional literals in the divisor 

• Kernels always have 2 or more cubes 

divisor 
(d) 

quotient  (q) 

f 
…………… 
…………… 
 
 
…………… 

remainder (r) 

q is a kernel if divisor 
(d) 

quotient  (q) 

f 
…………… 
…………… 
 
 
…………… 

remainder (r) 

d is ________ 

q is _________ 
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Kernels : Examples 
• Consider f = abc + abd + bcd 

Divisor d Quotient q Is it a Kernel? 
a 
b 
c 
d 
ab 
ac 
ad 
bc 
bd 
cd 
abc 
acd 
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Kernels : Examples 

• Do the following functions have 
kernels? 

f Single-cube divisors Kernels 
a 
a + b 
ab + ac 
abc + abd 
ab + acd + bd 
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Co-Kernels 
• Remember that kernels are obtained by 

dividing the expression with a divisor that is 
a cube 
– These single-cube divisors are called co-kernels 
– C(F) = { c: F/c ∈ K(F)} denotes set of co-kernels 

Example: 
x = adf + aef + bdf + bef + cdf + cef + g 

   = (a + b + c)(d + e)f + g 
 
  kernels   co-kernels 
  a+b+c   df, ef 
  d+e   af,  bf, cf 
  (a+b+c)(d+e)  f 
  (a+b+c)(d+e)f+g 1 
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Why care about kernels and co-
kernels? 

• Recall that we are looking for good 
single-cube and multi-cube common 
divisors 
– Kernels are multi-cube divisors 
– Co-kernels are single-cube divisors 
 

• OK, but how do we find common 
divisors across different expressions? 
– Do we look at ALL POSSIBLE divisors of 

each expression? 
19 
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Finding Common Divisors using Kernels 

• Theorem [Brayton and McMullen]: Given two 
expressions f and g, f and g have common algebraic 
divisors with more than one cube if and only if there exist 
kf ∈ K(f) and kg ∈ K(g) such that |kf ∩ kg| > 1 

 

• Significance : Only need to look at the kernels to 
identify all multi-cube common divisors for two 
functions!  
– Huge reduction in search space 

 

• The “intersection” of the kernels IS the common 
divisor! 
– NOTE: In this context, “intersection” means common cubes 

 
R. K. Brayton and C. McMullen, “The decomposition and factorization 
of Boolean expressions,” Proc. ISCAS, 1982. 
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Finding Common Divisors using Kernels 

• Example 

f = ae + be + cde + ab g = ad + ae + bd + be + bc 

Co-kernel Kernel 
a 
b 
e 
1 

Co-kernel Kernel 
a or b 
d or e 
b 
1 

Multi-cube intersection of kernels of f and g: 
 
 
Can each be used as a common divisor? 
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Kernels: Summary 

• Kernels are cube-free primary divisors 
of an expression 
– Intuitively: Quotients obtained when the 

expression is divided by “maximal” cubes 
• Kernels tell us when two expressions 

have multi-cube common factors 
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Finding Kernels 

• Two key ideas 
1. Remember, we start off with co-kernels 

to get kernels 
• How do we efficiently find the set of co-

kernels? 
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Co-kernel Selection 
• Theorem [Brayton and McMullen]: The co-

kernels of an expression in SOP form 
correspond to the intersections of 2 or more 
of it’s cubes 
– NOTE: In this context, “intersection” means just 

take the common literals. 
• Recall that we are only performing algebraic 

manipulations. 

Example: 
f = ace + bce + de + g 
 
ace ∩ bce = _______ 
 
ace ∩ bce ∩ de = ______ 

Potential co-kernels for f 
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Finding Kernels 

• Two key ideas 
1. Remember, we start off with co-kernels 

first to get kernels 
• How do we efficiently find the set of co-

kernels? 

2. If k1 is a kernel of f, all kernels of k1 are 
also kernels of f 
• Suggests a recursive approach to kernel 

generation 
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Recursive Computation of Kernels 
• Consider a kernel k1 of an expression f 

– f = d1.k1 + r1, where d1 is the co-kernel of k1 

• k1 itself is an expression, so it could have kernels. 
Let k2 be a kernel of k1 
– k1 = d2.k2 + r2 

• Re-write f in terms of k2 
– f = d1.(d2.k2+r2) + r1 
   = (d1.d2).k2 + (d1.r2 + r1) 
   = d3.k2 + r3 

• Important result 
– For k ∈ K(f), K(k) ∈ K(f) 
– This “hierarchy” of kernels enables recursive 

computation 
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Level of a Kernel 
• A kernel is of level 0 (K0) if it contains no kernels except 

itself. 
• A kernel is of level n (Kn) if it contains at least one kernel of 

level (n-1), but no kernels (except itself) of level n or greater 
 

Suppose Kn(F) denotes the set of kernels of level n or less. 
K0(F) ⊂ K1(F) ⊂ K2(F) ⊂ ... ⊂ Kn(F) ⊂ ... ⊂ K(F). 
 

level-n kernels = Kn = Kn(F) - Kn-1(F)  

Example: 
 
F  =  (a + b(c + d))(e + g) 

 
  k1 =  a + b(c + d)    ∈ K1 
      ∉ K0   - contains other kernel (k2)   k2 =  c + d    ∈ K0 
  k3 =  e + g    ∈ K0 
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Kernel Generation Algorithm 
• Recursive algorithm – call it on any kernels that 

you find to discover additional kernels 
• Processes variables in lexicographic order 

KERNELS(j, G) { 
  if (G is cube-free) 
    R = {G}; 
  else R = {}; 
  for (i = j+1, …, n) { 
    if (li appears in more than one cube) { 
      if (∃k ≤ i, lk ∈ all cubes of G/li ) 
        continue; 
      else { 
        R = R ∪ KERNELS(i, cube_free(G/li)) 
      } 
    } 
  } 
return R; 
} 

Process remaining 
variables in 
lexicographic order 

A cube-free function is a 
trivial kernel for itself 

Speedup technique 

Recursive call 
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KERNELS(0,f) 
returns all 
kernels of f 
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Kernel Generation Illustrated 
F = ace + bce + de + g   // n = 6 variables, { a,b,c,d,e,g } 
• Call KERNEL (0, F) 

– R = {(ace+bce+de+g)} 
– i =  1, l1 = a  literal a appears only once, continue 
– i =  2, l2 = b  literal b appears only once, continue 
– i =  3, l3 = c 

• make_cube_free(F/c) = (a+b) 
• call KERNEL(3, (a+b)) 

– the call considers variables 4,5,6 = {d,e,g} – no kernels 
• return R = {(a+b)} 

– i =  4, l4 = d  literal d appears only once, continue 
– i =  5, l5 = e 

• make_cube_free(F/e) = (ac+bc+d) 
• call KERNEL(5, (ac+bc+d)) 

– the call considers variable 6 = {g} – no kernels 
– return R = {(ac+bc+d)} 

– i =  6, l6 = g literal g appears only once, continue 
– Stop, return R = {(a+b),  (ac+bc+d), (ace+bce+de+g)} 
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