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Lecture #14: Re-cap

 Optimization problems involved in multi-level
synthesis are MUCH more computationally
challenging than two-level synthesis

e [terative improvement strategy: Transformations
iteratively applied to Boolean network
— Decomposition, Elimination, Extraction, Simplification
— Common operation: Identifying factors
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g Multi-level synthesis operations:

Summary
 Global

— Extraction

 Find common factors for two or more nodes
— Elimination / Collapsing

* Collapse a node into it’s fan-outs

— Re-substitution

e Re-substitute node into other nodes in the network
through factoring

e Local
— Decomposition

e Decompose a node through factoring
— Simplification

 Use ESPRESSO to simplify the expression inside a
node
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Factoring

e Common operation involved in multi-
level network transformations

 Two models (classes of techniques)
— Algebraic
— Boolean
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Algebraic Model for Boolean Expressions

e Think of Boolean expressions as
polynomials in real valued variables

 Only use a sub-set of laws of Boolean

algebra that apply to Real numbers and
polynomials

— Do not use:
e x+x =1
e x.X =0
e X+X=X
* XX =X
*xtyz=X+y)x+2
* X+ Xy =X

* X.(x+y)=Xx

_ e De Morgan’s law
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Algebraic Expressions and Operations

* Definition: An SOP expression f is an algebraic expression if no
single cube contains another (minimal with respect to single cube
containment)

Examples:
ab + ac IS an algebraic expression
a+ab IS NOT an algebraic expression (a contains ab)

Treat a and a’ as DIFFERENT variables

« Definition: fg is an algebraic product if f and g are algebraic
expressions and have disjoint support (that is, they have no variables
In common)

Examples:
(a+b)(c+d) = ac+ad+bc+bd is an algebraic product
(a+b)(a+d) = a + bd is NOT an algebraic product
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Algebraic Division

e Boolean algebra does not
have a multiplicative inverse
(x.x1=1)

— No division operation

e However, we can define the 4 Example:
concept of algebraic division f=abc +abd +h

— Given two expressions f and p,
p is a divisor of f if there are
expressions q and r such that

c f=pq+r \_

f=ab(c +d) +h

e p.qis an algebraic product
e (: quotient, r : remainder
e If remainder is O, the
quotient and divisor are
exact factors
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Algebraic Division : Examples

Example:
fzac+ad+bc+bd+e

Divisor Quotient Remainder | Exact
Factor?

ac + ad +
bc + bd + e

a+b

c+d

a

=3 ECH F*N el Rex
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Algebraic Division

« How do we do it systematically (an
algorithm)?
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Algebraic Division Algorithm : Weak Division

e Simple algorithm that implements algebraic
division

. _ F, G are SOP
— Walk through all pairs of cubes in F and G expressions

(set of cubes)

ALGORTTHM WEAK_DIVISION(F,G) {

7/ G=01,095, - - -}, F=(T,,T;, .. Note: Use algebraic
fo\l;;ela(g 9ic G4 interpretation!
foreach f; € F {——> Divide F by cube g |
1T (T, contains all literals of g:) { abc contains ab
vJ—f - literals of g;

\Vai=\/gi Vij abc — literals of ab = ¢
}
} cud=c+d
}
H = Mysi — Take intersection of quotients (@+b+c)n(b+c+d)
R=F - GH obtained for all g; =b+c
return (H,R);
b5 (abc +abd +e) -
(abc + abd) = e
\. y
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Weak Division : Example

F=axc+axd +axe +bc+bd +e
G=zax+h
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Algebraic Division and Factoring

e Common Divisors of multiple
functions can be used for factoring

f1 = fO q D
2 = f0. q2>
O
f3 = f0. q?D
r3
C i D

Number of possible divisors can be LARGE!
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Finding Common Divisors (Efficiently)

e Recall that divisors are also SOP
expressions
— Case 1 : Divisors are a single cube

e e.g., abc
— Case 2 : Divisors consist of multiple cubes
eeg,a+c’ +bd

e Key idea: Use of Kernels and Co-kernels
to identify divisors

R. K. Brayton and C. McMullen, “The decomposition and factorization
of Boolean expressions,” Proc. ISCAS, 1982.
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Kernels

 Primary divisors of a Boolean expression :
Quotients obtained by dividing function
with a single cube

— D(F) ={F/c | cis a cube} denotes the set of
primary divisors

 Kernels of a Boolean expression are it’s
cube-free primary divisors

— K(F) ={g | g € D(F) and g is cube-free} denotes
the set of kernels

 Cube-free : You cannot factor out a single-
cube divisor that leaves no remainder

L — e.g., bc + bde is NOT cube free, a+ b is cube free
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Kernels

e Intuitively, kernels result from dividing the function
by “maximal” single-cube divisors

— If quotient is not cube-free, you can always include
additional literals in the divisor

 Kernels always have 2 or more cubes qis
dis X
guotient (q) \ guotient (q)
divisor [ f q is a kernel if divisor [ f
d | .. d |
remainder (r) remainder (r)
\_

ECE 5957 Diaital VLSI Desian Automation. Sonrina 2012



Kernels : Examples

e Consider f = abc + abd + bcd

Divisor d Quotient q Is it a Kernel?

a

b

C

d

ab

ac

ad

bc

bd

cd

abc

acd
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Kernels : Examples

* Do the following functions have
kernels?

f Single-cube divisors | Kernels

a

a+b

ab + ac

abc + abd

ab + acd + bd

\_

ECE 5957 Diaital VLSI Desian Automation. Sonrina 2012



Co-Kernels

e Remember that kernels are obtained by
dividing the expression with a divisor that is
a cube

— These single-cube divisors are called co-kernels

— C(F) = {c: F/c € K(F)} denotes set of co-kernels

4 )
Example:

x = adf + aef + bdf + bef + cdf + cef + g
=(a+b+c)d+e)f+g

kernels co-kernels
a+b+c df, ef
d+e af, bf, cf
(a+b+c)(d+e) f
\. (atb+c)(d+e)i+g 1 Y,

\_
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Why care about kernels and co-
kernels?

 Recall that we are looking for good
single-cube and multi-cube common
divisors
— Kernels are multi-cube divisors
— Co-kernels are single-cube divisors

e OK, but how do we find common
divisors across different expressions?

— Do we look at ALL POSSIBLE divisors of
each expression?

\_
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Finding Common Divisors using Kernels

e Theorem [Brayton and McMullen]: Given two
expressions f and g, f and g have common algebraic
divisors with more than one cube if and only if there exist
k: € K(f) and kg € K(g) such that [k, N k [ > 1

e Significance : Only need to look at the kernels to
identify all multi-cube common divisors for two
functions!

— Huge reduction in search space

e The “intersection” of the kernels IS the common
divisor!

— NOTE: In this context, “intersection” means common cubes

R. K. Brayton and C. McMullen, “The decomposition and factorization
\ of Boolean expressions,” Proc. ISCAS, 1982.
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Finding Common Divisors using Kernels
« Example
f=ae + be + cde + ab g=ad+ ae + bd + be + bc
Co-kernel | Kernel Co-kernel | Kernel
a aorb
b dore
€ b
1 1
Multi-cube intersection of kernels of f and g:
Can each be used as a common divisor?
\_

ECE 5957 Diaital VLSI Desiaon Automation. Sonrina 2012




Kernels: Summary

 Kernels are cube-free primary divisors
of an expression

— Intuitively: Quotients obtained when the
expression is divided by “maximal” cubes

 Kernels tell us when two expressions
have multi-cube common factors

\_

ECE 5957 Diaital VLSI Desian Automation. Sonrina 2012



Finding Kernels

 Two key ideas

1. Remember, we start off with co-kernels
to get kernels

« How do we efficiently find the set of co-
kernels?

\_
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Co-kernel Selection

e Theorem [Brayton and McMullen]: The co-
kernels of an expression in SOP form

correspond to the intersections of 2 or more
of it’s cubes

— NOTE: In this context, “intersection” means just
take the common literals.

* Recall that we are only performing algebraic
manipulations.

Example:
f=ace +bce+de+g

ace N bce =
= Potential co-kernels for f

ace N bce N de =
\_ - Y,
\__
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Finding Kernels

 Two key ideas

1. Remember, we start off with co-kernels
first to get kernels

« How do we efficiently find the set of co-
kernels?

2. It k1 1s a kernel of {, all kernels of k1 are
also kernels of

e Suggests a recursive approach to kernel
generation
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Recursive Computation of Kernels

e Consider a kernel k1 of an expression {
— f=d1.kl1 +rl1, where d1 is the co-kernel of k1

e k1 itself is an expression, so it could have kernels.
Let k2 be a kernel of k1l

- k1 =d2.k2 + 12

e Re-write f in terms of k2
~ f=d1.(d2.k2+r2) + rl
= (d1.d2).k2 + (d1.r2 + rl)
= d3.k2 + r3

e Important result
— For k € K(f), K(k) € K(f)

— This “hierarchy” of kernels enables recursive
computation

\_
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Level of a Kernel

» A kernelis of level O (KY) if it contains no kernels except
itself.

e A kernel is of level n (K" if it contains at least one kernel of
level (n-1), but no kernels (except itself) of level n or greater

Suppose K*(F) denotes the set of kernels of level n or less.
KO(F) c K'(F) c K*(F) c ... ¢ KY(F) c ... ¢ K(F).

level-n kernels = K* = k*(F) - K1(F)

4 )
Example:
F = (a+b(c+d)(e+09)
k;= a+b(c+d) eK!
# KO - contains other kernel (k,)
k,=c+d e Kg
L K;= e+g e K )

\_
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 Recursive algorithm — call it on any kernels that

Kernel Generation Algorithm

you find to discover additional kernels

 Processes variables in lexicographic order

KERNELS(j, G) {

i R = {G};1 — trivial kernel for itself variables in
else R = ; : :
rff-(;F--(-i--:--j{-i-l-:-:-,--ﬁj-:{---/ |eX|COgraphIC Order

iIf 3k < i, I, € all cubes of G/I; )
continue;
else { e ,
1R = R U KERNELS(1, cube _free(G/1;))!
¥
¥
¥
return R;
¥

Process remaining

}Speedup technique

1] 5 Recursive call

KERNELS(O,{)
returns all
kernels of f
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Kernel Generation Illustrated

F = ace + bce + de + { // n=6variables, { a,b,c,d,e,g }

 Call KERNEL (0, F)
— R = {(ace+bce+de+g)}

- 1= 1,l;,=a literal a appears only once, continue
- 1=2,L,=0b literal b appears only once, continue
- 1= 3, =c

 make_cube_free(F/c) = (a+b)
e call KERNEL(3, (a+b))
— the call considers variables 4,5,6 = {d,e,g! — no kernels
 return R = {(a+b)}
- 1=4,1L=d literal d appears only once, continue
- 1= 5,=¢e
» make_cube_free(F/e) = (actbc+d)
e call KERNEL(S, (act+bc+d))
— the call considers variable 6 = {g! — no kernels
— return R = {(ac+bc+d)}
- 1=6,l;=¢g literal g appears only once, continue
— Stop, return R ={(a+b), (actbc+d), (ace+bce+de+g)}

\_
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