

ECE 595Z Digital VLSI Design Automation

Module 5 (Lectures 14-20): Multi-level Synthesis Lecture 15

Anand Raghunathan MSEE 348 raghunathan@purdue.edu

Lecture #14: Re-cap

- Optimization problems involved in multi-level synthesis are MUCH more computationally challenging than two-level synthesis
- Iterative improvement strategy: Transformations iteratively applied to Boolean network
 - Decomposition, Elimination, Extraction, Simplification
 - Common operation: Identifying factors

Multi-level synthesis operations: Summary

- Global
 - Extraction
 - Find common **factors** for two or more nodes
 - Elimination / Collapsing
 - Collapse a node into it's fan-outs
 - Re-substitution
 - Re-substitute node into other nodes in the network through **factoring**
- Local
 - Decomposition
 - Decompose a node through **factoring**
 - Simplification
 - Use ESPRESSO to simplify the expression inside a node

Factoring

- Common operation involved in multilevel network transformations
- Two models (classes of techniques)
 - Algebraic
 - Boolean

Algebraic Model for Boolean Expressions

- Think of Boolean expressions as polynomials in real valued variables
- Only use a sub-set of laws of Boolean algebra that apply to Real numbers and polynomials
 - Do not use:
 - x + x' = 1
 - x.x' = 0
 - $\mathbf{X} + \mathbf{X} = \mathbf{X}$
 - X.X = X
 - x + y.z = (x + y)(x + z)
 - $x + x \cdot y = x$
 - x.(x + y) = x
 - De Morgan's law

Algebraic Expressions and Operations

 Definition: An SOP expression f is an algebraic expression if no single cube contains another (minimal with respect to single cube containment)

Examples:

- *ab* + *ac* is an algebraic expression
- *a* + *ab* is NOT an algebraic expression (*a* contains *ab*)

Treat a and a' as DIFFERENT variables

 Definition: fg is an algebraic product if f and g are algebraic expressions and have disjoint support (that is, they have no variables in common)

Examples: (a+b)(c+d) = ac+ad+bc+bd is an algebraic product (a+b)(a+d) = a + bd is NOT an algebraic product

Algebraic Division

- Boolean algebra does not have a multiplicative inverse (x.x⁻¹ = 1)
 - No division operation
- However, we can define the concept of **algebraic division**
 - Given two expressions f and p,
 p is a divisor of f if there are
 expressions q and r such that
 - $f = p \cdot q + r$
 - p.q is an algebraic product
 - q : quotient, r : remainder
- If remainder is 0, the quotient and divisor are exact factors

Algebraic Division : Examples

Example:

f = ac + ad + bc + bd + e

Divisor	Quotient	Remainder	Exact Factor?
ac + ad + bc + bd + e			
a + b			
c + d			
а			
b			
с			
d			
e			
1			

Algebraic Division

• How do we do it systematically (an algorithm)?

Weak Division : Example

F = axc + axd + axe + bc + bd + eG = ax + b

Algebraic Division and Factoring

• Common Divisors of multiple functions can be used for factoring

Finding Common Divisors (Efficiently)

- Recall that divisors are also SOP expressions
 - Case 1 : Divisors are a single cube
 - e.g., abc
 - Case 2 : Divisors consist of multiple cubes

• e.g., a + c' + bd

• **Key idea**: Use of **Kernels** and **Co-kernels** to identify divisors

R. K. Brayton and C. McMullen, "The decomposition and factorization of Boolean expressions," Proc. ISCAS, 1982.

Kernels

- Primary divisors of a Boolean expression : Quotients obtained by dividing function with a single cube
 - D(F) = {F/c | c is a cube} denotes the set of primary divisors
- Kernels of a Boolean expression are it's cube-free primary divisors
 - K(F) = {g | g ∈ D(F) and g is cube-free} denotes the set of kernels
- Cube-free : You cannot factor out a singlecube divisor that leaves no remainder
 - e.g., bc + bde is NOT cube free, a+ b is cube free

Kernels

- Intuitively, kernels result from dividing the function by "maximal" single-cube divisors
 - If quotient is not cube-free, you can always include additional literals in the divisor
- Kernels always have 2 or more cubes

qis

Kernels : Examples

• Consider f = abc + abd + bcd

Divisor d	Quotient q	Is it a Kernel?
а		
b		
с		
d		
ab		
ac		
ad		
bc		
bd		
cd		
abc		
acd		

Kernels : Examples

• Do the following functions have kernels?

f	Single-cube divisors	Kernels
а		
a + b		
ab + ac		
abc + abd		
ab + acd + bd		

Co-Kernels

- Remember that kernels are obtained by dividing the expression with a divisor that is a cube
 - These single-cube divisors are called **co-kernels**
 - $C(F) = \{ c: F/c \in K(F) \}$ denotes set of co-kernels

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Why care about kernels and cokernels?

- Recall that we are looking for good single-cube and multi-cube common divisors
 - Kernels are multi-cube divisors
 - Co-kernels are single-cube divisors

- OK, but how do we find <u>common</u> divisors across different expressions?
 - Do we look at ALL POSSIBLE divisors of each expression?

Finding Common Divisors using Kernels

- Theorem [Brayton and McMullen]: Given two expressions f and g, f and g have common algebraic divisors with more than one cube if and only if there exist k_f ∈ K(f) and k_q ∈ K(g) such that |k_f ∩ k_g| > 1
- Significance : Only need to look at the kernels to identify all multi-cube common divisors for two functions!
 - Huge reduction in search space
- The "intersection" of the kernels IS the common divisor!
 - NOTE: In this context, "intersection" means common cubes

R. K. Brayton and C. McMullen, "The decomposition and factorization of Boolean expressions," Proc. ISCAS, 1982.

ECE 595Z: Digital VLSI Design Automation, Spring 2012

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Finding Common Divisors using Kernels

• Example

Co-kernel

а

b

e

1

f = ae + be + cde + ab

g = ad + ae + bd + be + bc

Co-kernel	Kernel
a or b	
d or e	
b	
1	

Multi-cube intersection of kernels of f and g:

Kernel

Can each be used as a common divisor?

Kernels: Summary

- Kernels are cube-free primary divisors of an expression
 - Intuitively: Quotients obtained when the expression is divided by "maximal" cubes
- Kernels tell us when two expressions have multi-cube common factors

Finding Kernels

- Two key ideas
 - 1. Remember, we start off with co-kernels to get kernels
 - How do we efficiently find the set of cokernels?

Co-kernel Selection

- **Theorem [Brayton and McMullen]:** The cokernels of an expression in SOP form correspond to the intersections of 2 or more of it's cubes
 - NOTE: In this context, "intersection" means just take the common literals.
 - Recall that we are only performing algebraic manipulations.

Example: f = ace + bce + de +	g
ace ∩ bce =	- Detential on karnals for f
ace \cap bce \cap de =	

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Finding Kernels

- Two key ideas
 - 1. Remember, we start off with co-kernels first to get kernels
 - How do we efficiently find the set of cokernels?
 - 2. If k1 is a kernel of f, all kernels of k1 are also kernels of f
 - Suggests a recursive approach to kernel generation

Recursive Computation of Kernels

- Consider a kernel k1 of an expression f
 f = d1.k1 + r1, where d1 is the co-kernel of k1
- k1 itself is an expression, so it could have kernels.
 Let k2 be a kernel of k1

- k1 = d2.k2 + r2

- Re-write f in terms of k2
 - f = d1.(d2.k2+r2) + r1
 - = (d1.d2).k2 + (d1.r2 + r1)
 - = d3.k2 + r3
- Important result
 - For $k \in K(f)$, $K(k) \in K(f)$
 - This "hierarchy" of kernels enables recursive computation

Level of a Kernel

- A kernel is of level 0 (*K*⁰) if it contains no kernels except itself.
- A kernel is of level *n* (*K*^{*n*}) if it contains at least one kernel of level (*n*-1), but no kernels (except itself) of level *n* or greater

Suppose $\mathbb{K}^n(F)$ denotes the set of kernels of level *n* or less. $\mathbb{K}^0(F) \subset \mathbb{K}^1(F) \subset \mathbb{K}^2(F) \subset ... \subset \mathbb{K}^n(F) \subset ... \subset \mathbb{K}(F).$

level-*n* kernels = $K^n = \mathbb{K}^n(F) - \mathbb{K}^{n-1}(F)$

Example:

F = (a + b(c + d))(e + g) $k_{1} = a + b(c + d) \in K^{1}$ $\notin K^{0} \quad \text{- contains other kernel } (k_{2})$ $k_{2} = c + d \quad \notin K^{0}$ $K_{3} = e + g \quad \notin K^{0}$

Kernel Generation Algorithm

- Recursive algorithm call it on any kernels that you find to discover additional kernels
- Processes variables in lexicographic order

Kernel Generation Illustrated

F = ace + bce + de + g // n = 6 variables, { a,b,c,d,e,g }

- Call KERNEL (0, F)
 - $R = \{(ace+bce+de+g)\}$
 - $-i = 1, l_1 = a$ literal a appears only once, continue $-i = 2, l_2 = b$ literal b appears only once, continue
 - $-i=3, l_3=c$
 - make_cube_free(F/c) = (a+b)
 - call KERNEL(3, (a+b))
 - the call considers variables $4,5,6 = \{d,e,g\}$ no kernels
 - return *R* = {(*a*+*b*)}
 - $-i = 4, l_4 = d$ literal *d* appears only once, continue
 - *i* = 5, *l*₅ = *e*
 - make_cube_free(F/e) = (ac+bc+d)
 - call KERNEL(5, (ac+bc+d))
 - the call considers variable $6 = \{g\}$ no kernels
 - return $R = \{(ac+bc+d)\}$
 - *i* = 6, l_6 = g literal *g* appears only once, continue
 - Stop, return $R = \{(a+b), (ac+bc+d), (ace+bce+de+g)\}$