
© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

ECE 595Z
Digital VLSI Design Automation

Module 5 (Lectures 14-20): Multi-level Synthesis

Lecture 17

Anand Raghunathan
MSEE 348

raghunathan@purdue.edu
1

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Lecture #16: Summary

• 0-1 Matrices can be used to represent sets
– Prime rectangles represent set intersections

• Applications to extraction
– Co-kernels / kernels are prime rectangles in cube-literal

matrix for a single expression
– Single cube factors are prime rectangles in cube-literal

matrix for multiple expressions
– Multi-cube factors are prime rectangles in co-kernel-cube

matrix
• How to select the “best” factor?

– Value of rectangles represent change in #literals

2

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Using “Value” to Select Factors

• Value is really a measure of change in
#literals if we select a given factor!

• Heuristic approach to factoring:
1. Find a rectangle of maximal value
2. Extract it
3. Update matrix
– Repeat Steps 1-3 with the next best

rectangle

3

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Matrix Update: Single-cube Case

• Once you extract a factor, need to
update the cube-literal matrix,
since the network has changed
– Add a column at end of matrix,

label it
– Add another row at bottom of

matrix, label it
– Change all the “1” entries of the

prime rectangle we just extracted
into “*” to indicate don’t cares

• Why? It’s OK to cover these
guys again with the next
rectangle we extract, but if you
don’t cover them it’s OK too

4

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Side-effects of Rectangle Overlap:
Single-cube Case

• It is OK for a rectangle to
cover some “*” entries

• Redefine “rectangle” to
mean “rows, cols don’t
cover any 0 entries”, i.e.,
it’s OK to cover the “*”
entries or don’t cares

• However, this “messes
up” an assumption of the
algebraic model!

5

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Side-effects of Rectangle Overlap
• Example:

F = (ab)c + (ab)(bd) + eg
is what we really are implementing!

6

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Side-effects of Rectangle Overlap

• Effect: Literals get repeated in the factoring
of products
– This is a technical violation of the algebraic

model, which said that if we factor f = d.q + r, d
and q should have no common variables

• Overlapping rectangles mean d, q do have
common variables

• Bottomline: Rectangle based algorithm gives
you (algebraic factoring)++
– Actually a good thing!

7

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Matrix Update (Multi-cube Factors)

• Consider co-kernel-cube matrix used for multi-cube
extraction

• What do you do after extracting a factor corresponding to a
prime rectangle?
1. Change all the “1”s in the prime rectangle into “*”s - since they

are already “covered” by the factor, they become don’t cares

8

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Matrix Update (Multi-cube Factors)
• What do you do after extracting a factor corresponding to a

prime rectangle?
1. Change all the “1”s in the prime rectangle into “*”s
2. Compute kernels for the multi-cube factor

• For each kernel you found here, add a new row (and label as before)
• No new columns – the factor is just an intersection of kernels found

before, so no new kernel cubes

Example:

X = a + b
(only 1 kernel –
itself)

I I

9

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Matrix Update (Multi-cube Factors)
• What do you do after extracting a factor corresponding to a

prime rectangle?
1. Change all the “1”s in the prime rectangle into “*”s
2. Compute kernels for the multi-cube factor

• For each kernel you found here, add a new row (and label as before)
• No new columns – the factor is just an intersection of kernels found

before, so no new kernel cubes
3. Other entries outside rectangle also become “*”s (WHY?)

Example:

I I

F = deX + fX +
ag + cg + cde

F = af + bf + ag +
cg + ade + bde +
cde

G = af + bf +
ace + bce

G = ceX + fX
10

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Matrix Update (Multi-cube Factors)
• Once some terms in the original SOP

expressions have been “covered” by
a factor, no need to consider them
any more

• How can we reflect this in the co-
kernel-cube matrix?

• Each “1” entry in the matrix
corresponds to a product term in
one of the original SOP expressions

F = deX + fX +
ag + cg + cde

F = af + bf + ag + cg
 + ade + bde + cde

G = af + bf + ace + bce

G = ceX + fX

I I

* *
* *

*
*

*
*

For each product term
that is covered by the
extracted factor, change
all entries corresponding
to that term to “*”

(X = a + b)
11

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Side-effects of Rectangle Overlap
(Multi-cube Factors)

• As with the single-
cube case, it is OK
for a rectangle to
include “*” entries

• Once again, this
breaks an
assumption of the
algebraic model

After 1st factor (X = a+b):
F = deX + fX + ag + cg + cde

After 2nd factor (Y = a+c):
F = deX + fX + deY + gY
 = de(a+b) + f(a+b) + de(a+c) + g(a+c)
 = ade + bde + af + bf + ade + cde + ag + cg

12

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Re-cap: Extraction of Factors
• Algebraic model
• Kernels / Co-kernels
• Unifying theme: Rectangles in 0-1 matrices
• Single-cube

– Cube-literal matrix
– Prime rectangle is a good factor

• Multi-cube
– Co-kernel-cube matrix
– Prime rectangle is a good factor

• Rectangle weights & values estimate literals saved
• Overall approach: Iteratively generate “good”

rectangles (another covering problem!)

13

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Algorithm for Rectangle Generation :
Greedy Row

• Objective: Find prime
rectangles one at a time
1. Start with a “seed” row

(rectangle with 1 row and
highest value)

2. Add a row such that
resulting rectangle is of
highest value (over all
possible row additions).

3. Repeat until rectangle is a
single column

4. Select best rectangle seen

Dual algorithm -
Greedy Column: Start
with seed column,
grow by adding
columns

14

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Algorithm for Rectangle Generation :
Ping-Pong

• Objective: Find prime rectangles one at a time
1. Start with a “seed” row (rectangle with 1 row and highest

value)
2. Add a row such that resulting rectangle is of highest

value (over all possible row additions). Keep adding until
value increases.

3. Add a column such that resulting rectangle is of highest
value. Keep adding until value increases.

4. Go to step 2.
5. Stop when you rectangle cannot be “profitably” grown in

any direction.

Used in MIS & SIS

15

© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

Boolean Optimization

16

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Can we go beyond the Algebraic Model?

• The algebraic model enables efficient (fast)
transformations of a Boolean network
– Collapsing/elimination, extraction/decomposition,

substitution, …

• However, it is limited in the scope of optimization
since it does not take advantage of the unique
properties of Boolean algebra.

17

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Boolean Division
• p is a Boolean divisor of f if q ≠ 0

and r exist such that
 f = pq + r

– q and r are not unique
– If r = 0, q is an exact factor of f

• Theorem: If f.g ≠ 0, then g is a
Boolean divisor of f

• Theorem: A logic function g is
an exact Boolean factor of a logic
function of f iff f ⊆ g

• Boolean division with a given
factor is OK, but no efficient
method for identifying Boolean
factors is known

f

g

f = gq + r

f g

Number of
Boolean divisors
and factors
is LARGE!

18

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Boolean Division: An indirect approach
• Apply two-level minimization!
• Given f = (fON, fDC, fOFF), and g, find the “best”

h,r such that gh + r is a cover for f.
– Create new variable y to represent output of g
– Add y ≠ g to the don’t care set for f

• fDC* = yg’ + y’g

– Minimize (fON(fDC*)’ , fDC + fDC* , fOFF(fDC*)’)
• Use ESPRESSO (modify cost-function to literals)
• Force y to appear in the result
• Product terms with y form the quotient, other terms form

the remainder

Example: f = a + bc, g = a+b
 fDC* = ya’b’ + y’a + y’b
Minimize (a + bc)(fDC*)’ with don’t care set fDC*

a + bc

a + yc

19

© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012

Boolean Optimization Using Don’t
Cares

20

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Augmenting Algebraic Methods with
Boolean Methods

• General strategy for technology-
independent optimization
– Circuit re-structuring using algebraic

methods
– Circuit simplification using Boolean

methods

21

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Don’t Cares

• From undergraduate digital logic
design: Don’t cares are input patterns
that could “never happen”

Example:

22

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Don’t Cares in Multi-level Boolean
Networks

• The “usual” don’t cares
– Somebody tells you based on the

semantics of the primary inputs
– Explicit don’t cares

• Don’t cares that occur due to the
network structure
– What we will talk about in this class
– Implicit don’t cares

23

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Outline

• Informal introduction to implicit don’t
cares in Boolean networks

• A more rigorous definition
• Optimizing Boolean networks using

implicit don’t cares
• Prime and irredundant Boolean

networks

24

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Informal Introduction to DCs

• Given a node in
a Boolean
network

• Can we say
anything about
don’t cares for
node f?

f = Xb + bY +
XY

X

b

Y

f

Boolean network

25

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Informal Introduction to DCs
• What if we know a little more

about the network
structure?
– Now, can we say something

about DCs for node f?
– YES! Look at “impossible”

values of a, b, X

f = Xb + bY +
XY

X

b
Y

f

X = ab

a

abX
000
001
010
011
100
101
110
111

possible?

XbY
000
001
010
011
100
101
110
111

possible?

26

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Informal Introduction to DCs

• How can we simplify
f using these don’t
cares?

f = Xb + bY +
XY

X

b
Y

f

X = ab

a

f = Xb + bY + XY

f =

Add don’t
cares &
simplify

27

ECE 595Z: Digital VLSI Design Automation, Spring 2012

Lecture #17: Summary

• Finished the discussion on Algebraic optimization
– Ping-pong algorithm for rectangle generation

• Boolean Optimization
– Boolean division and factoring are much harder than algebraic

counterparts
– Number of Boolean divisors/factors can be very large
– Boolean division using 2-level minimization

• Boolean Optimization Using Implicit Don’t Cares
– Implicit don’t cares are introduced due to the network itself
– We saw how to derive don’t cares at a node’s inputs by looking at it’s

fanin nodes
– A node can be simplified using its implicit don’t cares

28

	ECE 595Z�Digital VLSI Design Automation��Module 5 (Lectures 14-20): Multi-level Synthesis�Lecture 17
	Lecture #16: Summary
	Using “Value” to Select Factors
	Matrix Update: Single-cube Case
	Side-effects of Rectangle Overlap: Single-cube Case
	Side-effects of Rectangle Overlap
	Side-effects of Rectangle Overlap
	Matrix Update (Multi-cube Factors)
	Matrix Update (Multi-cube Factors)
	Matrix Update (Multi-cube Factors)
	Matrix Update (Multi-cube Factors)
	Side-effects of Rectangle Overlap (Multi-cube Factors)
	Re-cap: Extraction of Factors
	Algorithm for Rectangle Generation : Greedy Row
	Algorithm for Rectangle Generation : Ping-Pong
	Boolean Optimization
	Can we go beyond the Algebraic Model?
	Boolean Division
	Boolean Division: An indirect approach
	Boolean Optimization Using Don’t Cares
	Augmenting Algebraic Methods with Boolean Methods
	Don’t Cares
	Don’t Cares in Multi-level Boolean Networks
	Outline
	Informal Introduction to DCs
	Informal Introduction to DCs
	Informal Introduction to DCs
	Lecture #17: Summary

