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Lecture #16: Summary  

• 0-1 Matrices can be used to represent sets 
– Prime rectangles represent set intersections 

• Applications to extraction 
– Co-kernels / kernels are prime rectangles in cube-literal 

matrix for a single expression 
– Single cube factors are prime rectangles in cube-literal 

matrix for multiple expressions 
– Multi-cube factors are prime rectangles in co-kernel-cube 

matrix 
• How to select the “best” factor? 

– Value of rectangles represent change in #literals 
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Using “Value” to Select Factors 

• Value is really a measure of change in 
#literals if we select a given factor! 

• Heuristic approach to factoring: 
1. Find a rectangle of maximal value 
2. Extract it 
3. Update matrix 
– Repeat Steps 1-3 with the next best 

rectangle 
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Matrix Update: Single-cube Case 

• Once you extract a factor, need to 
update the cube-literal matrix, 
since the network has changed 
– Add a column at end of matrix, 

label it 
– Add another row at bottom of 

matrix, label it 
– Change all the “1” entries of the 

prime rectangle we just extracted 
into “*” to indicate don’t cares 

• Why? It’s OK to cover these 
guys again with the next 
rectangle we extract, but if you 
don’t cover them it’s OK too 
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Side-effects of Rectangle Overlap: 
Single-cube Case 

• It is OK for a rectangle to 
cover some “*” entries 

• Redefine “rectangle” to 
mean “rows, cols don’t 
cover any 0 entries”, i.e., 
it’s OK to cover the “*” 
entries or don’t cares 

• However, this “messes 
up” an assumption of the 
algebraic model! 

5 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Side-effects of Rectangle Overlap 
• Example: 

F = (ab)c + (ab)(bd) + eg 
is what we really are implementing! 
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Side-effects of Rectangle Overlap 

• Effect: Literals get repeated in the factoring 
of products 
– This is a technical violation of the algebraic 

model, which said that if we factor f = d.q + r, d 
and q should have no common variables 

• Overlapping rectangles mean d, q do have 
common variables 

• Bottomline: Rectangle based algorithm gives 
you (algebraic factoring)++ 
– Actually a good thing! 
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Matrix Update (Multi-cube Factors) 

• Consider co-kernel-cube matrix used for multi-cube 
extraction 

• What do you do after extracting a factor corresponding to a 
prime rectangle? 
1. Change all the “1”s in the prime rectangle into “*”s - since they 

are already “covered” by the factor, they become don’t cares 
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Matrix Update (Multi-cube Factors) 
• What do you do after extracting a factor corresponding to a 

prime rectangle? 
1. Change all the “1”s in the prime rectangle into “*”s 
2. Compute kernels for the multi-cube factor 

• For each kernel you found here, add a new row (and label as before) 
• No new columns – the factor is just an intersection of kernels found 

before, so no new kernel cubes 

Example: 

X = a + b 
(only 1 kernel – 
itself) 

I I 
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Matrix Update (Multi-cube Factors) 
• What do you do after extracting a factor corresponding to a 

prime rectangle? 
1. Change all the “1”s in the prime rectangle into “*”s 
2. Compute kernels for the multi-cube factor 

• For each kernel you found here, add a new row (and label as before) 
• No new columns – the factor is just an intersection of kernels found 

before, so no new kernel cubes 
3. Other entries outside rectangle also become “*”s (WHY?) 

Example: 

I I 

F = deX + fX + 
ag + cg + cde 

F = af + bf + ag + 
cg + ade + bde + 
cde 

G = af + bf + 
ace + bce 

G = ceX + fX 
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Matrix Update (Multi-cube Factors) 
• Once some terms in the original SOP 

expressions have been “covered” by 
a factor,  no need to consider them 
any more 

• How can we reflect this in the co-
kernel-cube matrix? 

• Each “1” entry in the matrix 
corresponds to a product term in 
one of the original SOP expressions 

F = deX + fX + 
ag + cg + cde 

F = af + bf + ag + cg  
     + ade + bde + cde 

G = af + bf + ace + bce 

G = ceX + fX 

I I 

*    * 
*    * 

* 
* 

* 
* 

For each product term 
that is covered by the 
extracted factor, change 
all entries corresponding 
to that term to “*” 

(X = a + b) 
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Side-effects of Rectangle Overlap 
(Multi-cube Factors) 

• As with the single-
cube case, it is OK 
for a rectangle to 
include “*” entries 

• Once again, this 
breaks an 
assumption of the 
algebraic model 

After 1st factor (X = a+b):     
F = deX + fX + ag + cg + cde 
 
After 2nd factor (Y = a+c): 
F = deX + fX + deY + gY 
   = de(a+b) + f(a+b) + de(a+c) + g(a+c) 
   = ade + bde + af + bf + ade + cde + ag + cg 
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Re-cap: Extraction of Factors 
• Algebraic model 
• Kernels / Co-kernels 
• Unifying theme: Rectangles in 0-1 matrices 
• Single-cube 

– Cube-literal matrix 
– Prime rectangle is a good factor 

• Multi-cube 
– Co-kernel-cube matrix 
– Prime rectangle is a good factor 

• Rectangle weights & values estimate literals saved 
• Overall approach: Iteratively generate “good” 

rectangles (another covering problem!) 
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Algorithm for Rectangle Generation : 
Greedy Row 

• Objective: Find prime 
rectangles one at a time 
1. Start with a “seed” row 

(rectangle with 1 row and 
highest value) 

2. Add a row such that 
resulting rectangle is of 
highest value (over all 
possible row additions). 

3. Repeat until rectangle is a 
single column 

4. Select best rectangle seen 

Dual algorithm - 
Greedy Column: Start 
with seed column, 
grow by adding 
columns 
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Algorithm for Rectangle Generation : 
Ping-Pong 

• Objective: Find prime rectangles one at a time 
1. Start with a “seed” row (rectangle with 1 row and highest 

value) 
2. Add a row such that resulting rectangle is of highest 

value (over all possible row additions). Keep adding until 
value increases. 

3. Add a column such that resulting rectangle is of highest 
value. Keep adding until value increases. 

4. Go to step 2. 
5. Stop when you rectangle cannot be “profitably” grown in 

any direction. 

Used in MIS & SIS 
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Boolean Optimization 
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Can we go beyond the Algebraic Model? 

• The algebraic model enables efficient (fast) 
transformations of a Boolean network 
– Collapsing/elimination, extraction/decomposition, 

substitution, … 

• However, it is limited in the scope of optimization 
since it does not take advantage of the unique 
properties of Boolean algebra. 
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Boolean Division 
• p is a Boolean divisor of f if q ≠ 0 

and r exist such that  
  f = pq + r 

– q and r are not unique 
– If r = 0, q is an exact factor of f 

• Theorem: If f.g ≠ 0, then g is a 
Boolean divisor of f 

• Theorem: A logic function g is 
an exact Boolean factor of a logic 
function of f  iff f ⊆ g 

• Boolean division with a given 
factor is OK, but no efficient 
method for identifying Boolean 
factors is known 
 

f 

g 

f = gq + r                              

f g 

Number of 
Boolean divisors 
and factors 
is LARGE! 
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Boolean Division: An indirect approach 
• Apply two-level minimization! 
• Given f = (fON, fDC, fOFF), and g, find the “best” 

h,r such that gh + r is a cover for f. 
– Create new variable y to represent output of g 
– Add y ≠ g to the don’t care set for f 

• fDC* = yg’ + y’g 

– Minimize (fON(fDC*)’ , fDC + fDC* , fOFF(fDC*)’ ) 
• Use ESPRESSO (modify cost-function to literals) 
• Force y to appear in the result 
• Product terms with y form the quotient, other terms form 

the remainder 

Example: f = a + bc, g = a+b 
  fDC* = ya’b’ + y’a + y’b 
Minimize (a + bc)(fDC*)’  with don’t care set fDC*  

a + bc 

a + yc 
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Boolean Optimization Using Don’t 
Cares 
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Augmenting Algebraic Methods with 
Boolean Methods 

• General strategy for technology-
independent optimization 
– Circuit re-structuring using algebraic 

methods 
– Circuit simplification using Boolean 

methods 
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Don’t Cares 

• From undergraduate digital logic 
design: Don’t cares are input patterns 
that could “never happen” 

Example: 
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Don’t Cares in Multi-level Boolean 
Networks 

• The “usual” don’t cares 
– Somebody tells you based on the 

semantics of the primary inputs 
– Explicit don’t cares 

• Don’t cares that occur due to the 
network structure 
– What we will talk about in this class 
– Implicit don’t cares 
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Outline 

• Informal introduction to implicit don’t 
cares in Boolean networks 

• A more rigorous definition 
• Optimizing Boolean networks using 

implicit don’t cares 
• Prime and irredundant Boolean 

networks 
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Informal Introduction to DCs 

• Given a node in 
a Boolean 
network 

• Can we say 
anything about 
don’t cares for 
node f? 

f = Xb + bY + 
XY 

X 

b 

Y 

f 

Boolean network 

25 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs 
• What if we know a little more 

about the network 
structure? 
– Now, can we say something 

about DCs for node f? 
– YES! Look at “impossible” 

values of a, b, X 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

a 

abX 
000 
001 
010 
011 
100 
101 
110 
111 

possible? 

XbY 
000 
001 
010 
011 
100 
101 
110 
111 

possible? 
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Informal Introduction to DCs 

• How can we simplify 
f using these don’t 
cares? 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

a 

f = Xb + bY + XY 

f = 

Add don’t 
cares & 
simplify 
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Lecture #17: Summary  

• Finished the discussion on Algebraic optimization 
– Ping-pong algorithm for rectangle generation 

• Boolean Optimization 
– Boolean division and factoring are much harder than algebraic 

counterparts 
– Number of Boolean divisors/factors can be very large 
– Boolean division using 2-level minimization 

• Boolean Optimization Using Implicit Don’t Cares 
– Implicit don’t cares are introduced due to the network itself 
– We saw how to derive don’t cares at a node’s inputs by looking at it’s 

fanin nodes 
– A node can be simplified using its implicit don’t cares 
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