
ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Cycles in Combinational Circuits 

• Digital circuits are called 
combinational if they are 
memory-less: they have 
outputs that depend only on 
the current values of the 
inputs. 

• Common misconception: 
combinational circuits cannot 
contain cycles 

• There exists a class of 
combinational circuits whose 
minimum implementation 
MUST necessarily be cyclic 
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W. H. Kautz, “The Necessity of Closed Circuit Loops in Minimal Combinational 
Circuits," IEEE Transactions on Computers, Vol. C-19, pp. 162-166, 1970. 

f1 = 
x1’f3 + x2’x3’ 

f2 = 
x1f1’ + x1’x2’x3’ 

f3 = 
x3’f2’ + x2’x3 

f1 = x1’x2’ + x1’x3’ + x2’x3’ 
f2 = x1x2 + x1x3 + x1’x2’x3’ 
f3 = x1x2’ + x2’x3 + x1’x2x3’ 

Minimum 
implementation  
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Cyclic Combinational Circuits 

• Can they arise during synthesis? 
• Recall Boolean optimization using DCs 

– Cycles result when you allow variables in the transitive fanout of 
a node to appear in it’s don’t cares (SDCs + ODCs) and use them 
in optimizing the node 

• Many design automation tools break when they see 
combinational cycles 

• Algorithms can be enhanced to work with cycles at the cost of 
modest slowdown 

2 

S. Malik, “Analysis of Cyclic Combinational Circuits," IEEE Transactions on Computer-
Aided Design, Vol. 13, No. 7, pp. 950-956, 1994. 

A. Raghunathan, P. Ashar and S. Malik, "Test generation for cyclic combinational circuits", 
IEEE Transactions on Computer-Aided Design, November 1995. 

(my Design Automation course project!) 
M. D. Riedel and J. Bruck, “The Synthesis of Cyclic Combinational Circuits," Design 
Automation Conference, pp. 163-168, 2003. 
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Summary: Technology-independent 
Multi-level Synthesis 

• Boolean network model 
• Algebraic transformations 
• Boolean optimization using SDCs and 

ODCs 
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Multi-level Minimization in Practice : 
MIS / SIS 

Putting it together … 

5 
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Multi-level Minimization in Practice : 
MIS / SIS 

• Implement a wide 
range of useful 
optimization steps, 
exposed as 
commands to user 

• Scripts : User 
specified “recipes” or 
sequences of steps 

sweep 
eliminate -1 
simplify -m nocomp 
eliminate  -1 
 
 
sweep 
eliminate  5 
simplify -m nocomp 
resub -a 
 
fx 
resub -a 
sweep 
 
eliminate -1 
sweep 
full_simplify -m nocomp 

Example: 

script.rugged 

6 
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Anatomy of a synthesis script 

• Command : sweep 
• Removes all nodes 

with a constant (0 or 
1) function and all 
nodes with only 1 
input 

• Periodically “clean 
up” such nodes 
produced by other 
operations 

sweep 
eliminate -1 
simplify -m nocomp 
eliminate  -1 
 
 
sweep 
eliminate  5 
simplify -m nocomp 
resub -a 
 
fx 
resub -a 
sweep 
 
eliminate -1 
sweep 
full_simplify -m nocomp 

script.rugged 
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Anatomy of a synthesis script 

• Example: sweep 

8 
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Anatomy of a synthesis script 

• Command : eliminate 
<threshold> 

• Eliminates all nodes 
whose “value” is ≤ 
threshold by collapsing 
them into their fanouts 

• Value represents the 
number of literals saved 
by keeping the node 
– Approximated by number 

of times a node output 
appears in the factored 
form of its fanouts 

sweep 
eliminate -1 
simplify -m nocomp 
eliminate  -1 
 
 
sweep 
eliminate  5 
simplify -m nocomp 
resub -a 
 
fx 
resub -a 
sweep 
 
eliminate -1 
sweep 
full_simplify -m nocomp 

script.rugged 
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Anatomy of a synthesis script 

• Example : eliminate 

10 
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Anatomy of a synthesis script 
• Command : simplify 
• Minimize SOP expression for 

each node in the network using a 
subset of the implicit don’t cares 

• “-m nocomp” means use 
ESPRESSO without computing 
the full off set 

• Multiple options for how to 
compute don’t cares, default uses 
a subset of transitive fanin of the 
node 

• full_simplify : similar, except 
full-blown computation of don’t 
cares 

sweep 
eliminate -1 
simplify -m nocomp 
eliminate  -1 
 
 
sweep 
eliminate  5 
simplify -m nocomp 
resub -a 
 
fx 
resub -a 
sweep 
 
eliminate -1 
sweep 
full_simplify -m nocomp 

script.rugged 

11 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Anatomy of a synthesis script 

• Example: simplify 

12 
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Anatomy of a synthesis script 

• Command : resub 
• Re-substitute each node 

into every other node in 
the network 
– Explores using both the 

node output and its 
complement 

• “-a” : use algebraic 
division 

• Keeps iterating until 
network (literal count) 
improves 

sweep 
eliminate -1 
simplify -m nocomp 
eliminate  -1 
 
 
sweep 
eliminate  5 
simplify -m nocomp 
resub -a 
 
fx 
resub -a 
sweep 
 
eliminate -1 
sweep 
full_simplify -m nocomp 

script.rugged 

13 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Anatomy of a synthesis script 

• Example: resub 

14 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Anatomy of a synthesis script 

• Command: fx 
• Finds all single-cube and 

double-cube divisors of nodes 
in the network 

• Greedily extracts the “best” 
divisor as a node 

• Usually followed by resub to 
see if the extracted factors are 
worth keeping 

• Also see: commands gcx, gkx 
– Use the techniques we spoke 

about in class for kernels / co-
kernels 

 

sweep 
eliminate -1 
simplify -m nocomp 
eliminate  -1 
 
 
sweep 
eliminate  5 
simplify -m nocomp 
resub -a 
 
fx 
resub -a 
sweep 
 
eliminate -1 
sweep 
full_simplify -m nocomp 

script.rugged 

15 
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Anatomy of a synthesis script 

• Example: fx 

Note: fx creates new nodes by extracting common factors 
          resub substitutes existing network nodes into each other 

16 
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Anatomy of a synthesis script 
• Overview of strategy 

used in script.rugged 
• Four phases of 

optimization 
– Simpler to more 

complex 

• Uses algebraic 
division for extracting 
factors and 
substitution 

• Boolean optimization 
for node simplification 

sweep 
eliminate -1 
simplify -m nocomp 
eliminate  -1 
 
 
sweep 
eliminate  5 
simplify -m nocomp 
resub -a 
 
fx 
resub -a 
sweep 
 
eliminate -1 
sweep 
full_simplify -m nocomp 

script.rugged 

Simple 
clean-
up 

Round of 
“easy” 
factoring 

Round of 
aggressive 
factoring 

Optimize 
each node 

17 
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Summary 

• Multi-level synthesis 
– Technology independent (completed) 

• Boolean network model 
• Operations: Extraction, Substitution, 

Elimination, Decomposition, Simplification 
• Algebraic model for factoring 

– Kernels / co-kernels 
– Algorithms using 0-1 matrices  

• Boolean optimization using don’t cares 
• Synthesis in MIS / SIS 

– Technology mapping 
• We will cover this next 

18 
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Further Reading 

• “MIS: A Multiple-Level Logic Optimization System”, R. K. Brayton, R. 
Rudell, A. Sangiovanni-Vincentelli, A. R. Wang, IEEE Transactions 
on Computer-Aided Design of Integrated Circuits and Systems, vol. 
6,  no. 6,  Nov. 1987, pp. 1062 - 1081  

• “Multilevel logic synthesis”, R. K. Brayton, G. D. Hachtel, and A. 
Sangiovanni-Vincentelli, Proceedings of the IEEE, vol. 78, no. 2, 
Feb. 1990. 

• “Logic synthesis for VLSI design”, R. Rudell, Ph.D. thesis, U. C. 
Berkeley, 1989. 

• “A Method for Concurrent Decomposition and Factorization of 
Boolean Expressions,” J. Vasudevamurthy, J. Rajski, IEEE/ACM 
International Conference on Computer-Aided Design (ICCAD), Nov. 
1990, pp. 510-513 
– Shows that only double-cube divisors are sufficient to detect whether 

common multi-cube divisors exist 
– Excellent results: Synthesized circuits have similar quality to kernel-

based factoring, but 10X faster! 

19 
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Technology Mapping : From Boolean 

Networks to Gates 

20 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Technology Mapping in the Logic 
Synthesis Flow 

• Technology 
independent 
optimization 
produces a good 
“rough” structure for 
the network 

• Technology mapping 
realizes the network 
using gates from a 
cell library 

21 

Initial logic network 

Technology 
independent 
optimization 

Technology 
mapping Cell library  
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Technology Mapping 
• Given 

– A Boolean network (already optimized using technology 
independent optimizations) 

– A library that contains cells (gates) that can be used, with 
models for area, delay, power 

• Determine how to implement the given network 
using gates from the library (optimally) 

22 

t1 = d + e 

t2 = b + h 
t3 =  

a t2 + c 

t4 =  
t1 t3 + f g h 

f = t4’ 

Library 
Unmapped network 

Area = … 
Delay = … 
Power = … 
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Cell Library 
• Contains variety of primitives (cells, or simple and 

complex gates) 
– Commercial libraries have dozens (or hundreds) of logic cells 
– Each function in different “drive strengths” 
– Richer cell libraries usually lead to better quality of results, 

while increasing the complexity of technology mapping 

23 

OR2 

AND2 

NOR2 

NAND2 

INV 

OR3 

AND3 

NOR3 

NAND3 

XOR2 

XNOR2 

OAI211 

OAI21 
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Approaches to Technology Mapping 

• Rule-based (LSS, SOCRATES) 
• Structural Pattern Matching (DAGON, MIS/SIS) 

– Represent each node of the network as a set of base 
functions (primitive gates): 

• Must be complete  
• Typically 2-input NAND and INVERTER 
• Network becomes a subject graph 

– Each gate of the library is likewise represented using the 
base set. This results in pattern graphs. 
• Represent each gate in all possible ways 

– Cover the subject graph with pattern graphs 

• Boolean matching 
– Exploit Boolean relationships to find more / better 

matches  
– Use BDD representations 

24 

Our 
focus 
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Subject Graph 

• Decompose each 
node of the 
Boolean network 
into base 
functions  
– 2-input NAND 

and INVERTER 

• Subject graph is 
a directed acyclic 
graph (DAG) 

• Not unique, any 
decomposition is 
OK 

25 

c 
a 

b 

h 

e 

d 

f 

g 

f 

t1 = d + e 

t2 = b + h 
t3 =  

a t2 + c 

t4 =  
t1 t3 + f g h 

f = t4’ 

t1 

t2 

t3 

t4 
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Pattern Graph 

• Each gate in the library is represented using the 
same base functions 
– Pattern Graphs 
– Not unique 

• Represent each gate in all possible ways 

26 

NAND4 

Pattern Graphs for NAND4 
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Pattern Graphs for a Simple Library 

27 

nand2(2) 

inv(1) 

nand3(3) 

nand4(4) 

aoi21(3) 

aoi22(4) 

and2(3) 

xor(5) 

nor2(2) 

nor3(3) 

nor4(4) 

nand4(4) 

nor4(4) 

oai22(4) 

or2(3) 

xnor(5) 

oai21(3) 

Cost 
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c 
a 

b 

h 

e 

d 

f 

g 

f 

Example: 

Technology Mapping as a Graph Covering 
Problem 

• A cover is a collection of 
pattern graph 
instances such that 
– Every node of the 

subject graph is 
contained in one or 
more instances. 

– Each input required by 
a pattern graph 
instance is a primary 
input or the output of 
some other pattern 
graph instance 

• Need to find the 
minimum cost cover 
– For now, we assume 

that cost of the cover = 
sum of the costs of 
pattern graph 
instances 

28 

Cost of the cover (8 nand2 + 7 inv) =   
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Technology Mapping as a Graph Covering 
Problem 

• Multiple solutions exist! 

29 

c 
a 

b 

h 

e 

d 

f 

g 

f 

Example 

aoi22(4) 
and2(3) 

or2(3) 

or2(3) 

nand2(2) 

nand2(2) 
inv(1) 

Cost of the cover (1 aoi22 + 2 or2 + 1 and2  
                             + 2 nand2 + 1 inv)   =   
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Technology Mapping as a Graph Covering 
Problem 

• Multiple solutions exist! 

30 

c 
a 

b 

h 

e 

d 

f 

g 

f 

Example 

Cost of the cover (2 oai21 + 1 and2  +  
 1 nand3  + 1 nand2 + 1 inv)   =   

and2(3) 

nand3(3) 

oai21(3) 

oai21(3) 

nand2(2) 
inv(1) 

Need a 
systematic 
approach to 
explore the 

design 
space 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Technology Mapping Using Graph 
Covering 

• General Approach 
– Construct a subject DAG 

(Directed Acyclic Graph) for 
the Boolean network 

– Represent each gate in the 
target library by pattern DAGs 

– Find an optimal-cost covering 
of subject DAG using the 
collection of pattern DAGs 

• Challenge: Complexity of 
DAG covering 
– NP-hard 
– Remains NP-hard even when 

all nodes have in-degree ≤ 2 

31 

Two solution 
approaches 

Binate Row 
Covering 
Problem 

Decompose 
DAG into 

trees 

If subject graph and pattern 
graph are trees (each vertex 
has an out-degree of 1), then 
an efficient algorithm exists! 
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