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Technology mapping: Re-cap 

• Technology mapping is a DAG covering 
problem 
– Convert circuit to be mapped into subject graph, 

cells from library into pattern graphs 

• Two solution approaches discussed 
– Binate covering formulation – considers arbitrary 

DAGs, but not very scalable in practice 
– Tree covering using dynamic programming – 

divide DAG into trees, utilize optimal and efficient 
algorithm to map each tree 
• Inverter heuristic creates additional opportunities for 

matches, improves solution quality 
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Technology mapping: Remaining 
questions 

• How to map for minimum delay? 
– Not an additive cost function 
– Delay of a cell depends on its drivers and 

loads 
• How to partition a DAG into trees 
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Technology Mapping for Delay 
• Delay of a gate 

  d(g,i) = α(g,i) + β(g).γ(g) 
– α(g,i): intrinsic delay of g 

from input i 
– β(g): delay per unit load 
– γ(g): capacitive load being 

driven 

• Problem: In tree mapping, 
γ is NOT known when 
finding the best match at 
a vertex 
– γ is determined by matches 

at fanout 
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d(z,a) 

γ(g) 

What is the 
value of γ? 
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Technology Mapping for Delay : 
Constant Delay Model 

• Simplification: Constant delay model 
– Delay of gate is independent of load it drives 

• In this case, dynamic programming still works! 
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int min_delay_const_load(v, P){ 
/* v is a vertex in the tree, P is the set of pattern graphs */ 
 best_cost = infinity; 
 foreach(m = match(v, P)) { 
  cost(m) = maxvi ∈ inputs(m) ( α(m,i) + β(m) γ0 + 
     min_delay_constant_load(vi, P) ); 
  if(cost(m) < best_cost){ 
   match(v) = m; 
   best_cost = cost(m); 
  } 
 } 
 return best_cost; 
} 
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Technology Mapping for Delay :  
Load-dependent Delay Model 

• Consider a set of discrete loads Γ(v) = {γ1, γ2,… γk} for vertex v. 
– can be obtained by dividing useful range into bins 

• Find best solution for each load at each vertex 
 
 
 
 
 
 
 
 
 
 
 

• Final step: Given a load at the root of the tree, a backward 
traversal from the root to the leaves is needed at the end to pick 
the appropriate matches. 
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int min_delay(v, Γ(v), P){ 
 
 foreach(γ ∈ Γ(v)) { 
  best_cost(v, γ) = infinity; 
 } 
 
 foreach(m = match(v, P), γ ε Γ(v)){ 
  cost(m, γ) = maxvi ∈inputs(m) ( α(m,i) + β(m) γ + 
     min_delay(vi, γ(m,i), P) ); 
  /* γ(m,i) is input capacitance of match m at input i */ 
  if(cost(m, γ) < best_cost(v, γ)){ 
   match(v, γ) = m; 
   best_cost(v, γ) = cost(m, γ); 
  } 
 } 
 return best_cost(v, γ0); 
} 
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Partitioning a DAG into Trees 
• Trivial Partition: Break the DAG at all multiple 

fanout points. 
– Guarantees no overlap among trees (no logic replication). 
– Sometimes leads to lots of small trees. 
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Partitioning a DAG into Trees 
• Single-cone partition 

– From a single output, form a large tree back to the primary 
inputs;  

– Map successive outputs until they hit match output formed from 
mapping previous primary outputs. 

– Duplicates some logic (where trees overlap) 
– Produces larger trees, better area results in practice 
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Summary: Technology Mapping 

• Three different approaches 
– Rule-based 
– Structural matching 

• Graph covering problem (subject DAG, pattern 
DAGs) 

– Binate covering formulation 
» Too slow in practice 

– Tree covering 
» Dynamic programming, very efficient and scalable 

– Boolean matching 
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General Principles 

• Look for problems from a 
different domain that are 
equivalent to the problem you are 
trying to solve 
– Technology mapping in logic 

synthesis ⇔ code generation in 
compilers 

• Combining exact solutions for 
sub-problems may give an exact 
(or a good approximate) solution 
for the complete problem  
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Suggested Reading 

• Hachtel & Somenzi, Chapter 13 
• De Micheli, Chapter 10.1,10.2,10.3.1-10.3.3 
• Key Papers 

– K. Keutzer, "DAGON: Technology binding and local optimization 
by DAG matching," in Proc. 24th ACM/IEEE Conf. on Design 
Automation, pp. 341-347, 1987  

– “MIS: A Multiple-Level Logic Optimization System”, R. K. 
Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. R. Wang, IEEE 
Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, vol. 6,  no. 6,  Nov. 1987, pp. 1062 - 1081  

– “Logic synthesis for VLSI design”, R. Rudell, Ph.D. thesis, U. C. 
Berkeley, 1989. 

– Performance-Oriented Technology Mapping, (H.J. Touati, Ch.W. 
Moon and R. K. Brayton), Proceedings of MIT VLSI Conference, 
1990. 

– “Technology mapping for low power”, V. Tiwari, P. Ashar, and S. 
Malik, Design Automation Conference, pp. 74-79, 1993. 
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Timing Optimization 

• We have learnt thus far how to 
synthesize (small) circuits fast 

• But, we also want to synthesize FAST 
circuits! 

• Until recently, performance (clock 
frequency) was undisptued king for 
most ICs 
– Still is important, except power also 

matters in most applications and can be 
the primary metric in some 
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Timing Analysis 

• Given a (sequential) circuit, how fast 
can I clock it while maintaining 
correct operation? 
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Combinational 
Logic Inputs 

Clock 
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Outline 
• Timing Analysis 

– Clocking criteria for sequential circuits 
– Timing graph 
– Delay models for gates 
– Topological timing analysis 
– Functional timing analysis 

• Timing Optimization 
– Collapsing and re-structuring 
– Generalized Bypass Transform 
– Generalized Select Transform 
– Eliminating false paths 
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Timing Analysis 
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Clocking Criteria for Sequential Circuits 

• Consider circuits with edge-triggered 
storage elements (Flip-Flops) 

• What timing properties should be satisfied 
for correct operation? 
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Combinational 
logic 

0 T 

clock 
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Clock period = T 



ECE 595Z: Digital Systems Design Automation, Spring 2012 

Setup Condition 

• Data that we 
intend to capture 
at a Flip-Flop 
must arrive 
before the clock 
edge by at least 
the setup time 
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Combinational 
logic 

0 T 

clock 

data 

Setup Criterion for Sequential Circuits 
• Setup condition: The outputs of the combinational 

logic should settle in time to be captured 
• Translates to an upper bound on the longest delay 

through the combinational logic 
– (t1 + T – setup time) – (t0 + δ) 
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The output needs to be stable by 
time  t1+T – setup time of FF 

t0+δ 

t1+T t1 

t0 t0+T 

t0+δ 

Need to capture output 
of combinational logic 
here 
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Hold Condition 

• Data that we intend to capture at a 
Flip-Flop must not change after the 
clock edge until at least the hold time 
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Hold Criterion for Sequential Circuits 
• Hold condition: The outputs of the combinational 

logic should not change too early 
• Translates to a lower bound on the shortest delay 

through the combinational logic 
– (t1 + hold time) – (t0 + δ) 
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The output should not change 
before time  t1+ hold time of FF 

Combinational 
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Delay Models for Gates 

• Unit delay 
• Constant delay 
• Pin-to-pin delay 
• State and Transition dependent delay 
• Load and slew rate dependent delay 
• PVT corners 
• Statistical delay models 

23 

Accuracy vs. computation time tradeoff 
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Unit Delay Model 
• Simplest model: Assume 

each gate has a fixed delay of 
1 unit 

• Usually applied to a network 
of 2-input gates and 
inverters 

• Typically used in technology-
independent optimizations 

• Still useful for coarse-
grained comparisons 
between alternative circuit 
structures 
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Delay = 5 units 

Delay = 3 units 
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Constant Delay Model 

• Different but fixed 
delay for each gate 
type 

• Simplest technology-
dependent delay 
model 
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Pin-to-Pin Delay Model 

• Not all pins are 
created equal! 

• Accounts for the fact 
that different paths 
through a gate can 
have different delays 

• Input to output delay 
depends on 
transistor-level 
implementation of 
gate/cell 
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State / Transition Dependent Delay 
Model 

• The values on inputs 
of the gate actually 
matter in determining 
its delay 
– Example: Not all 

transitions are equal! 
Rising and falling 
transition at output 
have different delays 

• Note: Gate delay 
can be dependent 
on history 

27 

Delay(o/p rising) = 1.2 
Delay(o/p falling) = 1 

XOR2 

Delay(i/p falling, o/p falling) = 3.1 
Delay(i/p falling, o/p rising) = 3.4 
Delay(i/p rising, o/p falling) = 3.6 
Delay(i/p rising, o/p rising) = 3.8 
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Load and Slew Rate Dependent Model 

• Considers dependency of 
delay on output load and 
input slew rate 
– Lookup table with inter-

polation 
• Discretize useful range of 

input slew rates and 
output loads 

– Equation 
• Fit simulated / measured 

data 

• Need similar model for 
computing slew rate at 
output 
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CL 

τin 

Delay = α⋅τin + β⋅CL + γ⋅τin⋅CL + δ 

Delay equation (o/p falling) 

Delay table (o/p falling) 



ECE 595Z: Digital Systems Design Automation, Spring 2012 

PVT Corners 
• Delay is impacted by Process, Voltage, and 

Temperature variations 
• Conventional approach: Consider “corners” 

– Slow, Typical (or Nominal), Fast 

• Problem: Increasing spread leads to very 
conservative estimates 
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– Possible 
solution: 
Statistical 
models 
(active area 
of research) 
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Summary 

• Basic questions in timing analysis 
– Do the outputs of the combinational logic always 

reach the (final) stable value in time to be 
correctly captured? 
• Setup condition 

– Do the outputs of the combinational logic stay 
stable long enough to be correctly captured? 
• Hold condition 

• Various delay models possible for gates 
• Need delay models for wires too, but we will 

not talk about them in this class 
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