

ECE 595Z Digital VLSI Design Automation

Module 7 (Lectures 24-26): Sequential Logic
Optimization
Lecture 25

Anand Raghunathan
MSEE 318
raghunathan@purdue.edu

FSM Synthesis - Overview

- Given FSM specification, synthesize optimized implementation (gates + FFs)
 - State minimization
 - State encoding
 - Derive next-state,
 output functions &
 apply combinational
 logic minimization
 techniques

State Minimization

- Multiple states in an FSM may be equivalent
 - Equivalent states may be merged into a single state without affecting functionality
 - Often reduces complexity of implementation, but not always
- Definition of equivalence is different for completely and incompletely specified FSMs

Equivalent States in Completely Specified FSMs

- **Definition**: Two states are equivalent iff the output sequences of the FSM initialized in the two states are equal for any input sequence
- **Theorem**: Two states of a completely specified FSM are equivalent iff, for every input, the outputs are identical and the corresponding next states are equivalent

 $s_i = s_j$ if _____

Example

• Does this FSM contain equivalent states?

Distinguishable States

- **Definition**: Two states, s_i and s_j of FSM M are *distinguishable* if and only if there exists a **finite input sequence** which when applied to M **causes different output sequences** depending on whether M started in s_i or s_j .
 - Such a sequence is called a *distinguishing sequence* for (s_i, s_j)
 - If there exists a distinguishing sequence of length k for (s_i, s_j) , they are said to be k-distinguishable.

Example:

PS	NS, z	
	x=0	x=1
Α	E, 0	D, 1
В	F, 0	D , 0
B C	E, 0	B, 1
D	F, 0	B, 0
E	C, 0	F, 1
F	B, 0	C, 0

A and B are	
-------------	--

A and E are _____

Identifying Equivalent States

- Partition set of states so that two states are in the same group/partition iff they are equivalent
- Compute this iteratively
 - 1. Start with all states in one group
 - 2. Split states for which applying the same input leads to different outputs
 - 3. Split states whose next states when applying the same input are in different groups
 - 4. Repeat step 3 until no further change

The above procedure is guaranteed to terminate in n_s steps, where n_s is the number of states in the FSM. The Complexity is $O(n_s^2)$. An $O(n_s \log(n_s))$ algorithm exists.

Identifying Equivalent States: Example

- Start with all states in one group
- 2. Split states for which applying the same input leads to different outputs
- 3. Split states whose next states when applying the same input are in different groups
- Repeat step 3 until no further change

outpu					
0	<u>1</u>				
0	1				
1	1				
1	1				
1	0				
	0 0 1 1 1				

$$\{s_{1}, s_{2}, s_{3}, s_{4}\}$$

$$\{s_{1}\}, \{s_{2}, s_{3}\}, \{s_{4}\}$$

$$\{s_{1}\}, \{s_{2}, s_{3}\}, \{s_{4}\}$$

No change!

Identifying Equivalent States: Example

- 1. Start with all states in one group
- 2. Split states for which applying the same input leads to different outputs
- 3. Split states whose next states when applying the same input are in different groups
- 4. Repeat step 3 until no further change

{A,B,C,D,E,F}
{A,C,E}, {B,D,F}
{A,C,E}, {B,D}, {F}
{A,C}, {E}, {B,D}, {F}
{A,C}, {E}, {B,D}, {F} No change!

State Minimization

- Given equivalent groups of states
 - Merge all states in a group of equivalent states into a single state
 - All transitions going in/out of all states in the group go in/out of the merged state

How about Incompletely Specified FSMs?

• **Definition**: Two states are **compatible** iff they agree on the outputs when they are all specified & corresponding next states are compatible when both are specified

A ~ B if

1/- from A is made 1/1

0/- from B is made 0/1

B ~ C if

0/- from B is made 0/0 AND A ~ E

- Important difference between equivalence and compatibility
 - Equivalence is transitive (A=B and B=C \rightarrow A=C)
 - Compatibility is NOT! (A~B and B~C ★ A~C)

Minimizing Incompletely Specified FSMs

- How about specifying don't cares to 0/1 and using technique for minimizing completely specified FSMs?
 - Huge number of possible don't care assignments
 - Setting the don't care values differently can lead to drastically different results!

Minimizing Incompletely Specified FSMs

Overview

PS	N5,	PO
	×=0	×=1
Α	C, 1	E, *
В	C,*	E, 1
С	В, О	A, 1
D	D, 0	E, 1
Е	D, 1	Α, 0

	Pairs	Implied Pairs
Compatible	{A, B}	
Compatible	{A, E}	{C, D}
Compatible	{B, C}	{A, E}
Compatible	{B, D}	{C, D}
Compatible	{C, D}	{B, D}, {A, E}
Incompatible	{A, C}	
Incompatible	$\{A, D\}$	
Incompatible	{B, E}	
Incompatible	{C, E}	
Incompatible	(D, E)	

Find compatible pairs

Find larger compatible sets

Compatibles Implied Classes

 $\begin{cases} \{A,B\} \\ \{A,E\} \\ \{B,C,D\} \end{cases} \begin{cases} \{C,D\} \\ \{A,E\} \end{cases} \beta$ in

Closed set (all implied classes are contained within it)

Complete set (all states are included)

Choose minimum subset

Minimizing Incompletely Specified FSMs

- Algorithm to minimize incompletely specified FSMs
 - 1. Find the pairs of compatible states
 - 2. Find the maximal compatibles
 - 3. Find the remaining prime compatibles
 - 4. Select the minimum number of prime compatibles such that they form a closed and complete cover
 - Binate covering problem!
 - 5. Construct the reduced FSM

Finding Maximal Compatibles

- Maximal compatibles: sets of compatible states that are not strictly contained in any other set of compatible states
- Step 2: Find the maximal compatibles
 - a) Associate a variable to a state s_i. 1 means that s_i belongs to the maximal compatibles
 - b) Take each incompatible pair s_i, s_j and make a clause with s_i' and s_j'
 - c) Take a product of all the clauses (POS form)

f,0

a,1

9,-

- d) Multiply it out to get SOP expression
- e) Identify a maximal compatible from each product term in the SOP expression

	Inputs							
	\times_1	\times_2	\times_3	\times_4	x_5	× ₆	× ₇	
α	α,0	ı	d,0	e,1	Ь,О	α,-	-	
b	Ь,0	d,1	α,-	-	α,-	α,1	-	
с	Ь,0	d,1	a,1	-	-	1	9,0	
d	-	е,-	-	b,-	b,0	1	α,-	
е	b,-	е,-	α,-	-	b,-	е,-	a,1	
f	Ь,0	с,-	-,1	h,1	f,1	g,0	-	

Example

c,1

e,0

States

9

State transition table

e,1

b,0

d,1

POS expression representing compatibles

(a'+c')(a'+f')(a'+h')(b'+f')(b'+g')(b'+h')(c'+e') (c'+h')(d'+f')(d'+g')(e'+f')(e'+g')(f'+h')(g'+h')

b,-

Finding Maximal Compatibles

Example

	\times_1	× ₂	\times_3	\times_4	x_5	x_6	× ₇
α	a,0	-	d,0	e,1	b,0	α,-	-
b	b,0	d,1	α,-	1	α,-	α,1	1
с	b,0	d,1	α,1	-	1	-	9,0
d	-	е,-	1	b,-	b,0	1	α,-
е	b,-	e,-	α,-	ı	b,-	e,-	α,1
f	b,0	С,-	-,1	h,1	f,1	9,0	1
9	-	c,1	-	e,1	-	9,-	f,0
h	α,1	e,0	d,1	Ь,О	b,-	е,-	α,1

State transition table

POS expression representing compatibles

Maximal Compatibles: abde, bcd, ag, deh, cfg

Finding Additional Prime Compatibles

- Step 3: Find the remaining prime compatibles
- Let C1 be a compatible set and let Γ 1 be the corresponding set of implied classes. C1 is prime iff there does not exist C2 \supset C1 such that Γ 2 \subseteq Γ 1

ECE 595Z: Digital Systems Design Automation, Spring 2012

Finding a Minimum Cover

- Step 4: Select a minimum set of prime compatibles that
 - Forms a closed cover
 - Is a complete cover

Maximal compatibles	Implied classes
{a,b,d,e}	{}
{b,c,d}	{{a,b}, {a,g}, {d,e}}
{c,f,g}	{{c,d}, {e,h}}
{d,e,h}	{{a,b}, {a,d}}
{a,g}	{}
Other Prime compatibles	
{b,c}	{}
{c,d}	{{a,g}, {d,e}}
{c,f}	{{c,d}}
{c,g}	{{c,d}, {f,g}}
{f,g}	{{e,h}}
{d,h}	{}
{ f }	{}

Minimum cover

A = {a, b, d, e} B = {d, e, h} C = {b, c} D = {f, g}

Constructing the Reduced FSM

• Same as completely specified case, except specify don't cares as necessary

Example:

	\times_1	×2	\times_3	\times_4	×5	\times_6	× ₇
α	α,0	ı	d,0	e,1	Ь,О	α,-	1
Ь	Ь,0	d,1	α,-	ı	α,-	α,1	-
с	b,0	d,1	α,1	ı	ı	ı	9,0
d	-	е,-	ı	b,-	Ь,О	ı	α,-
е	b,-	е,-	α,-	ı	b,-	е,-	α,1
f	b,0	С,-	-,1	h,1	f,1	9,0	-
9	-	c,1	1	e,1	ı	9,-	f,0
h	α,1	e,0	d,1	Ь,О	b,-	е,-	α,1

