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Summary 

• Sequential logic minimization 
– State minimization 

• Completely specified FSMs 
– Identify and merge equivalent states 
– Efficient algorithm (O(n log n)) 

• Incompletely specified FSMs 
– Identify minimum set of compatibles that is closed 

and complete 
– Problem is NP-hard [Pfleeger 1973] 

– State encoding 
– Combinational logic synthesis 

2 



ECE 595Z: Digital Systems Design Automation, Spring 2012 

State Encoding (a.k.a. State Assignment) 
• Assign binary representation to “symbolic” 

states. 
– Defines the next state and output functions 
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Symbolic State Table 

State Encoding 
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State Encoding: Example 

• State encoding has a strong impact on the 
combinational logic complexity (and hence, 
area, timing, and power) 
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S0     S0     S1    0      0 
S1     S2     S1    0      0 
S2     S0     S1    0      1 

              NS          PO 
PS    x=0  x=1  x=0  x=1 
00     00    01    0      0 
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10     00    01    0      1 

Optimized Logic 
Expressions: 

              NS          PO 
PS    x=0  x=1  x=0  x=1 
11     11    10    0      0 
10     01    10    0      0 
01     11    10    0      1 Optimized Logic 

Expressions: 
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Complexity of State Encoding 

• How many possible ways to encode an FSM 
that has s states using n bits? 
 
 
 
 

• What if permutations of state bits are 
considered equivalent? 

5 

00…0 00…1 11…1 2n possible codes 

S0 S1 Ss s states 

2n
Ps 

              NS          PO 
PS    x=0  x=1  x=0  x=1 
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State Encoding to Minimize 
Combinational Logic Complexity 

• Key idea: Perform encoding so as to create 
opportunities for logic minimization in the next 
state and output functions 
– Techniques differ depending on whether target 

implementation of next-state & output logic is two-level or 
multi-level 
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Guidelines for State Encoding 

• States that have the same next state for the 
same input value should be given adjacent 
assignments 
 
 
 
 
 
 

• Same applies for states that have the same 
output for the same input value 
 7 

              NS          PO 
PS    x=0  x=1  x=0  x=1 
…     …    …     …      … 
s1      s3    …     …      … 
…     …    …     …      … 
s2      s3    …     …      … 
…     …    …     …      … 

Transition condition (s3) 
      = x’a’b’c’ + x’a’b’c 
      = x’a’b’ (c’+c) = x’a’b’  
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Benefit: Potential for combining 
cubes in the next-state logic 

      abc 
s1 : 000 
s2:  001 

Encoding 
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Guidelines for State Encoding 

• States that have the same next state (for any 
input value) should be given adjacent 
assignments 
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              NS          PO 
PS    x=0  x=1  x=0  x=1 
…     …    …     …      … 
s1      s3    …     …      … 
…     …    …     …      … 
s2      …    s3     …      … 
…     …    …     …      … 

Transition condition (s3) 
      = x’a’b’c’ + xa’b’c 
      = a’b’ (x’c’+xc)  

Benefit: Potential for common 
factors in the next-state logic 

      abc 
s1 : 000 
s2:  111 

Transition condition (s3) 
      = x’a’b’c’ + xabc 

      abc 
s1 : 000 
s2:  011 

Transition condition (s3) 
      = x’a’b’c’ + xa’bc 
      = a’(x’b’c’ + xbc) 

      abc 
s1 : 000 
s2:  001 

Encoding 

What if we choose a 
different encoding? 
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Guidelines for State Encoding 
• Next states that result from the same 

previous state should be given adjacent 
assignments 
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              NS          PO 
PS    x=0  x=1  x=0  x=1 
…     …    …     …      … 
s1      s2    s3     …      … 
…     …    …     …      … 
…      …   …     …      … 
…     …    …     …      … 

Transition condition (s2) 
      = x’a’b’c’ + … 
Transition condition (s3) 
      = xa’b’c’ + … 

Benefit: Potential for combining 
cubes or common factors in the 
next-state logic 

c+ = x’a’b’c’ + … + xa’b’c’ + …. 

a’b’c’ 

              NS          PO 
PS    x1x2 
         00    11    00      11 
…     …    …     …      … 
s1      s2    s3     …      … 
…     …    …     …      … 
…      …   …     …      … 
…     …    …     …      … 

Transition condition (s2) 
      = x1’x2’a’b’c’ + … 
Transition condition (s3) 
      = x1x2a’b’c’ + … 

c+ = x1’x2’a’b’c’ + … +    
        x1x2a’b’c’ + …. 

a’b’c’(x1’x2’ + x1x2) 

      abc 
s1 : 000 
s2:  001 
s3:  011 
 

Encoding 
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State Encoding Algorithm 

• General approach: Construct a complete 
graph with nodes representing states, and 
weighted edges representing “affinity” 
– Affinity(si,sj) should reflect the potential 

benefit of assigning adjacent codes to states 
si and sj 

– Label the vertices of the graph based on the 
edge weights 
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S. Devadas, et al, “MUSTANG: state assignment of finite state machines for optimal multi-level logic 
implementations,” IEEE Transactions on Computer-Aided Design, Dec. 1988. 

Two different approaches to computing edge 
weights – fanout-oriented and fanin-oriented 
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State Encoding Algorithm: Computing 
Edge Weights (Fanout-Oriented) 

• Fanout-oriented heuristic: Present states that result in 
similar outputs and produce similar sets of next states are 
given high affinity 
– Intuition: Maximize the size of the most commonly occurring 

cube factors in the next-state and output logic 
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State Encoding Algorithms: Computing 
Edge Weights (Fanout-Oriented) 

TTb
ji jSETOUTiSETOUTjSETNSiSETNSNW )(_)(_)(_)(_

2, ⋅+⋅⋅=
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Nb: # of encoding bits 
NS_SET(i): ith row of NS_SET matrix 
OUT_SET(i): ith row of OUT_SET matrix 

• Formula to compute edge weights 
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State Encoding Algorithm: Computing 
Edge Weights (Fanin-Oriented) 

• Fanin-oriented heuristic: Next states that are 
produced by similar inputs and similar sets of 
present states are given high affinity 
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State Encoding Algorithm: Computing 
Edge Weights (Fanin-Oriented) 

TT
bji jSETINiSETINjSETPSiSETPSNW )(_)(_)(_)(_, ⋅+⋅⋅=
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Nb: # of encoding bits 
NS_SET(i): ith row of NS_SET matrix 
OUT_SET(i): ith row of OUT_SET matrix 

• Formula to compute edge weights 

W1,2 = 3 

W2,3 = 1 

S1 
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W1,3 = 7 

W1,3 = 2.[1  1  1][0  1  1]T + [1 2][1 1]T = 7 
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State Encoding Algorithm 
• Algorithm for computing state 

encoding 
1. Select the state for which sum of weights 

of Nb heaviest incident edges is 
maximum 

2. Arbitrarily assign a code to it and assign 
adjacent codes to Nb adjacent states 
• If some adjacent states have already been 

assigned codes, consider them when assigning 
a code to the selected state 

3. Remove the state and edges selected in 
step 1 from the graph 

4. Go to 1 and repeat, until graph is empty 

• How well does this work in practice? 
• 30-40% lower literal count in the 

combinational logic (after multi-level 
optimization) compared to random state 
encoding 
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S. Devadas, et al, “MUSTANG: state assignment of finite state machines for optimal multi-level logic implementations,” 
IEEE Transactions on Computer-Aided Design, Dec. 1988. 
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Summary: FSM synthesis 
• State minimization 

– Completely specified FSMs: 
equivalent states 

– Incompletely specified: 
compatible states 

• State encoding 
– Create opportunities for 

two-level and multi-level 
minimization algorithms to 
optimize the next state and 
output logic 

• FSM-based synthesis is 
usually used only for 
control logic 
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Optimizing Structural Representations 
of Sequential Networks 
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Limitations of FSM synthesis 
• FSM representation is too large for most 

circuits 
– Only parts of the design (e.g., control logic) with 

small state spaces can be represented as an 
FSM 

– Data-paths have HUGE state spaces 

• Two key advances have extended the scale 
of FSMs that can be handled 

• Implicit representations (BDDs) 
• Network of interacting FSMs 

• Even with these advances, FSM synthesis is 
not applicable to large circuits (> 1000s of 
FFs) 
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Structural Approaches to Sequential 
Circuit Optimization 

• Optimize combinational logic using 
sequential Don’t Cares 

• Retiming 
• Retiming & Re-synthesis 
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Retiming 

• Recall De Morgan’s law? 
– Moving “bubbles” across gates 

 
 

 
• It turns out you can do the same thing with 

flip-flops! 
– Does not change I/O behavior 
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C. E. Leiserson, F. M. Rose, 
and J. B. Saxe, “Optimizing 
synchronous circuitry by 
retiming,” Proc. 3rd Caltech 
Conf. on VLSI, 1983. 
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Retiming: Why? 

• Re-position the flip-flops in the circuit to 
more “optimal” points 
– Increase the clock frequency 
– Reduce the number of registers 
– … 
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Retiming: Example 

22 

Longest 
combinational 

path = 2 

Gate delays 

Longest 
combinational 

path = 3 
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