
© 2012 Anand Raghunathan ECE 595Z: Digital Systems Design Automation, Spring 2012

ECE 595Z
Digital VLSI Design Automation

Module 7 (Lectures 24-27): Sequential Logic
Optimization
Lecture 26

Anand Raghunathan
MSEE 318

raghunathan@purdue.edu
1

ECE 595Z: Digital Systems Design Automation, Spring 2012

Summary

• Sequential logic minimization
– State minimization

• Completely specified FSMs
– Identify and merge equivalent states
– Efficient algorithm (O(n log n))

• Incompletely specified FSMs
– Identify minimum set of compatibles that is closed

and complete
– Problem is NP-hard [Pfleeger 1973]

– State encoding
– Combinational logic synthesis

2

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding (a.k.a. State Assignment)
• Assign binary representation to “symbolic”

states.
– Defines the next state and output functions

3

Symbolic State Table

State Encoding

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding: Example

• State encoding has a strong impact on the
combinational logic complexity (and hence,
area, timing, and power)

4

“101”
detector X Z

1/0

0/0 1/1

0/0

1/0

0/0 S0

S2

S1
 NS PO
PS x=0 x=1 x=0 x=1
S0 S0 S1 0 0
S1 S2 S1 0 0
S2 S0 S1 0 1

 NS PO
PS x=0 x=1 x=0 x=1
00 00 01 0 0
01 10 01 0 0
10 00 01 0 1

Optimized Logic
Expressions:

 NS PO
PS x=0 x=1 x=0 x=1
11 11 10 0 0
10 01 10 0 0
01 11 10 0 1 Optimized Logic

Expressions:

ECE 595Z: Digital Systems Design Automation, Spring 2012

Complexity of State Encoding

• How many possible ways to encode an FSM
that has s states using n bits?

• What if permutations of state bits are
considered equivalent?

5

00…0 00…1 11…1 2n possible codes

S0 S1 Ss s states

2n
Ps

 NS PO
PS x=0 x=1 x=0 x=1
00 00 01 0 0
01 10 01 0 0
10 00 01 0 1

 NS PO
PS x=0 x=1 x=0 x=1
00 00 10 0 0
10 01 10 0 0
01 00 10 0 1

2n
Ps

n!

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding to Minimize
Combinational Logic Complexity

• Key idea: Perform encoding so as to create
opportunities for logic minimization in the next
state and output functions
– Techniques differ depending on whether target

implementation of next-state & output logic is two-level or
multi-level

6

x ∈ I y ∈ O
λ

δ s ∈ S s+ ∈ S

D

ECE 595Z: Digital Systems Design Automation, Spring 2012

Guidelines for State Encoding

• States that have the same next state for the
same input value should be given adjacent
assignments

• Same applies for states that have the same
output for the same input value
 7

 NS PO
PS x=0 x=1 x=0 x=1
… … … … …
s1 s3 … … …
… … … … …
s2 s3 … … …
… … … … …

Transition condition (s3)
 = x’a’b’c’ + x’a’b’c
 = x’a’b’ (c’+c) = x’a’b’

∑
=

=
 1 bit with states all

)()(
 is

j
j

sConditionTransitioniNS

Benefit: Potential for combining
cubes in the next-state logic

 abc
s1 : 000
s2: 001

Encoding

ECE 595Z: Digital Systems Design Automation, Spring 2012

Guidelines for State Encoding

• States that have the same next state (for any
input value) should be given adjacent
assignments

8

 NS PO
PS x=0 x=1 x=0 x=1
… … … … …
s1 s3 … … …
… … … … …
s2 … s3 … …
… … … … …

Transition condition (s3)
 = x’a’b’c’ + xa’b’c
 = a’b’ (x’c’+xc)

Benefit: Potential for common
factors in the next-state logic

 abc
s1 : 000
s2: 111

Transition condition (s3)
 = x’a’b’c’ + xabc

 abc
s1 : 000
s2: 011

Transition condition (s3)
 = x’a’b’c’ + xa’bc
 = a’(x’b’c’ + xbc)

 abc
s1 : 000
s2: 001

Encoding

What if we choose a
different encoding?

ECE 595Z: Digital Systems Design Automation, Spring 2012

Guidelines for State Encoding
• Next states that result from the same

previous state should be given adjacent
assignments

9

 NS PO
PS x=0 x=1 x=0 x=1
… … … … …
s1 s2 s3 … …
… … … … …
… … … … …
… … … … …

Transition condition (s2)
 = x’a’b’c’ + …
Transition condition (s3)
 = xa’b’c’ + …

Benefit: Potential for combining
cubes or common factors in the
next-state logic

c+ = x’a’b’c’ + … + xa’b’c’ + ….

a’b’c’

 NS PO
PS x1x2
 00 11 00 11
… … … … …
s1 s2 s3 … …
… … … … …
… … … … …
… … … … …

Transition condition (s2)
 = x1’x2’a’b’c’ + …
Transition condition (s3)
 = x1x2a’b’c’ + …

c+ = x1’x2’a’b’c’ + … +
 x1x2a’b’c’ + ….

a’b’c’(x1’x2’ + x1x2)

 abc
s1 : 000
s2: 001
s3: 011

Encoding

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding Algorithm

• General approach: Construct a complete
graph with nodes representing states, and
weighted edges representing “affinity”
– Affinity(si,sj) should reflect the potential

benefit of assigning adjacent codes to states
si and sj

– Label the vertices of the graph based on the
edge weights

10

S. Devadas, et al, “MUSTANG: state assignment of finite state machines for optimal multi-level logic
implementations,” IEEE Transactions on Computer-Aided Design, Dec. 1988.

Two different approaches to computing edge
weights – fanout-oriented and fanin-oriented

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding Algorithm: Computing
Edge Weights (Fanout-Oriented)

• Fanout-oriented heuristic: Present states that result in
similar outputs and produce similar sets of next states are
given high affinity
– Intuition: Maximize the size of the most commonly occurring

cube factors in the next-state and output logic

11

=

101
101
011

_

3

2

1

321

p

p

p

nnn

S
S
S

SSS

SETNS

Next state set: Matrix that captures how often a (PS,NS) pair occurs
Output set: How often an output bit is asserted in each PS

=

1
0
1

_

3

2

1

z

S
S
S

SETOUT

p

p

p

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding Algorithms: Computing
Edge Weights (Fanout-Oriented)

TTb
ji jSETOUTiSETOUTjSETNSiSETNSNW)(_)(_)(_)(_

2, ⋅+⋅⋅=

12

Nb: # of encoding bits
NS_SET(i): ith row of NS_SET matrix
OUT_SET(i): ith row of OUT_SET matrix

• Formula to compute edge weights

=

101
101
011

_

3

2

1

321

p

p

p

nnn

S
S
S

SSS

SETNS

=

1
0
1

_

3

2

1

z

S
S
S

SETOUT

p

p

p

W1,2 = 1

W2,3 = 2

S1

S2
S3

W1,3 = 2

W2,3 = 1.[1 0 1][1 0 1]T + [0][1]T = 2

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding Algorithm: Computing
Edge Weights (Fanin-Oriented)

• Fanin-oriented heuristic: Next states that are
produced by similar inputs and similar sets of
present states are given high affinity

13

=

110
001
111

_

3

2

1

321

n

n

n

ppp

S
S
S

SSS

SETPS

Present state set: Matrix that captures how often a (NS,PS) pair occurs
Input set: How often a next state is caused for each input value

=

1
0
2

1
1
1

_

'

3

2

1

xx

S
S
S

SETIN

n

n

n

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding Algorithm: Computing
Edge Weights (Fanin-Oriented)

TT
bji jSETINiSETINjSETPSiSETPSNW)(_)(_)(_)(_, ⋅+⋅⋅=

14

Nb: # of encoding bits
NS_SET(i): ith row of NS_SET matrix
OUT_SET(i): ith row of OUT_SET matrix

• Formula to compute edge weights

W1,2 = 3

W2,3 = 1

S1

S2
S3

W1,3 = 7

W1,3 = 2.[1 1 1][0 1 1]T + [1 2][1 1]T = 7

=

110
001
111

_

3

2

1

321

n

n

n

ppp

S
S
S

SSS

SETPS

=

1
0
2

1
1
1

_

'

3

2

1

xx

S
S
S

SETIN

n

n

n

ECE 595Z: Digital Systems Design Automation, Spring 2012

State Encoding Algorithm
• Algorithm for computing state

encoding
1. Select the state for which sum of weights

of Nb heaviest incident edges is
maximum

2. Arbitrarily assign a code to it and assign
adjacent codes to Nb adjacent states
• If some adjacent states have already been

assigned codes, consider them when assigning
a code to the selected state

3. Remove the state and edges selected in
step 1 from the graph

4. Go to 1 and repeat, until graph is empty

• How well does this work in practice?
• 30-40% lower literal count in the

combinational logic (after multi-level
optimization) compared to random state
encoding

15

S. Devadas, et al, “MUSTANG: state assignment of finite state machines for optimal multi-level logic implementations,”
IEEE Transactions on Computer-Aided Design, Dec. 1988.

S1

S2

S3

S4

S0

4

0

2
3

3 4

6 2
2

1

Nb = 3
Pick S3 (6+2+4)
S3 → 000
S0 → 001
S1 → 010
S2 → 100

S1

S2

S4

S0

2
3

3 4

2
1

010

100

001

S4 → 110

ECE 595Z: Digital Systems Design Automation, Spring 2012

Summary: FSM synthesis
• State minimization

– Completely specified FSMs:
equivalent states

– Incompletely specified:
compatible states

• State encoding
– Create opportunities for

two-level and multi-level
minimization algorithms to
optimize the next state and
output logic

• FSM-based synthesis is
usually used only for
control logic

16

0 1

1/

1

----/1

(--00, 11-0)/0

(1010, 0110)/1

FF

in1
in2

in3
in4

out 1

State Minimization

State Encoding

Combinational
Logic Synthesis

© 2012 Anand Raghunathan ECE 595Z: Digital Systems Design Automation, Spring 2012

Optimizing Structural Representations
of Sequential Networks

17

ECE 595Z: Digital Systems Design Automation, Spring 2012

Limitations of FSM synthesis
• FSM representation is too large for most

circuits
– Only parts of the design (e.g., control logic) with

small state spaces can be represented as an
FSM

– Data-paths have HUGE state spaces

• Two key advances have extended the scale
of FSMs that can be handled

• Implicit representations (BDDs)
• Network of interacting FSMs

• Even with these advances, FSM synthesis is
not applicable to large circuits (> 1000s of
FFs)

18

ECE 595Z: Digital Systems Design Automation, Spring 2012

Structural Approaches to Sequential
Circuit Optimization

• Optimize combinational logic using
sequential Don’t Cares

• Retiming
• Retiming & Re-synthesis

19

ECE 595Z: Digital Systems Design Automation, Spring 2012

Retiming

• Recall De Morgan’s law?
– Moving “bubbles” across gates

• It turns out you can do the same thing with

flip-flops!
– Does not change I/O behavior

20

C. E. Leiserson, F. M. Rose,
and J. B. Saxe, “Optimizing
synchronous circuitry by
retiming,” Proc. 3rd Caltech
Conf. on VLSI, 1983.

ECE 595Z: Digital Systems Design Automation, Spring 2012

Retiming: Why?

• Re-position the flip-flops in the circuit to
more “optimal” points
– Increase the clock frequency
– Reduce the number of registers
– …

21

ECE 595Z: Digital Systems Design Automation, Spring 2012

Retiming: Example

22

Longest
combinational

path = 2

Gate delays

Longest
combinational

path = 3

	ECE 595Z�Digital VLSI Design Automation��Module 7 (Lectures 24-27): Sequential Logic Optimization�Lecture 26
	Summary
	State Encoding (a.k.a. State Assignment)
	State Encoding: Example
	Complexity of State Encoding
	State Encoding to Minimize Combinational Logic Complexity
	Guidelines for State Encoding
	Guidelines for State Encoding
	Guidelines for State Encoding
	State Encoding Algorithm
	State Encoding Algorithm: Computing Edge Weights (Fanout-Oriented)
	State Encoding Algorithms: Computing Edge Weights (Fanout-Oriented)
	State Encoding Algorithm: Computing Edge Weights (Fanin-Oriented)
	State Encoding Algorithm: Computing Edge Weights (Fanin-Oriented)
	State Encoding Algorithm
	Summary: FSM synthesis
	Optimizing Structural Representations of Sequential Networks
	Limitations of FSM synthesis
	Structural Approaches to Sequential Circuit Optimization
	Retiming
	Retiming: Why?
	Retiming: Example

