

ECE 595Z Digital VLSI Design Automation

Module 7 (Lectures 24-27): Sequential Logic Optimization
Lecture 26

Anand Raghunathan
MSEE 318
raghunathan@purdue.edu

Summary

- Sequential logic minimization
 - State minimization
 - Completely specified FSMs
 - Identify and merge equivalent states
 - Efficient algorithm (O(n log n))
 - Incompletely specified FSMs
 - Identify minimum set of compatibles that is closed and complete
 - Problem is NP-hard [Pfleeger 1973]
 - State encoding
 - Combinational logic synthesis

State Encoding (a.k.a. State Assignment)

- Assign binary representation to "symbolic" states.
 - Defines the next state and output functions

Symbolic State Table

State Encoding: Example

 State encoding has a strong impact on the combinational logic complexity (and hence, area, timing, and power)

Complexity of State Encoding

 How many possible ways to encode an FSM that has s states using n bits?

• What if permutations of state bits are considered equivalent?

	NS		PO x=0 x=1			NS x=0 x=1		PO	
PS	x=0	x=1	x=0	x=1	PS	x=0	x=1	x=0	x=1
00	00	01	0	0				0	
01 10	10	01	0	0				0	
10	00	01	0	1	01	00	10	0	1

State Encoding to Minimize Combinational Logic Complexity

- **Key idea**: Perform encoding so as to create opportunities for logic minimization in the next state and output functions
 - Techniques differ depending on whether target implementation of next-state & output logic is two-level or multi-level

Guidelines for State Encoding

• States that have the same next state for the same input value should be given adjacent assignments

$$NS(i) = \sum_{\text{all states } s_j \text{ with bit } i=1} Transition Condition(s_j)$$

 Same applies for states that have the same output for the same input value

Guidelines for State Encoding

• States that have the same next state (for any input value) should be given adjacent assignments

PS	NS x=0 x=1		O <u>x=1</u>	Encoding abc	Transition condition (s ₃) = x'a'b'c' + xa'b'c		
s ₁	s ₃			$s_1:000$ $s_2:001$	= a'b' (x'c'+xc)		
s ₂	s ₃				Benefit: Potential for common factors in the next-state logic		
	at if we		_	abc s ₁ : 000 s ₂ : 111	Transition condition (s ₃) = x'a'b'c' + xabc		
aiii	erent ei	acoc	ung?	abc s ₁ :000	Transition condition (s ₃) = x'a'b'c' + xa'bc		

= a'(x'b'c' + xbc)

 s_2 : 011

ECE 595Z: Digital Systems Design Automation, Spring 2012

Guidelines for State Encoding

• Next states that result from the same previous state should be given adjacent assignments

			_	_	Encoding
	NS NS		PO x=0 x=1		abc
PS	x=0	x=1	x=0	x=1	
					$ s_1 .000$
-	l		•••	•••	s _o : 001
s_1	S ₂	S_3		• • • •	02. 001
•••	 		•••	•••	$s_1:000$ $s_2:001$ $s_3:011$
•••			•••	•••	
	 				

Transition condition
$$(s_2)$$

= $x'a'b'c'+...$
Transition condition (s_3)
= $xa'b'c'+...$
 $c^+ = x'a'b'c'+...+xa'b'c'+....$
 $a'b'c'$

Benefit: Potential for combining

cubes or common factors in the

Transition condition (s_2) = x_1 ' x_2 'a'b'c' + ... Transition condition (s_3) = x_1x_2 a'b'c' + ...

next-state logic

$$c^{+} = x_{1}'x_{2}'a'b'c' + ... +$$
 $x_{1}x_{2}a'b'c' + ...$
 $x_{1}x_{2}a'b'c' + ...$
 $x_{1}x_{2}a'b'c' + ...$

State Encoding Algorithm

- **General approach**: Construct a complete graph with nodes representing states, and weighted edges representing "affinity"
 - Affinity(s_i,s_j) should reflect the potential benefit of assigning adjacent codes to states s_i and s_j
 - Label the vertices of the graph based on the edge weights

Two different approaches to computing edge weights – fanout-oriented and fanin-oriented

S. Devadas, et al, "MUSTANG: state assignment of finite state machines for optimal multi-level logic implementations," IEEE Transactions on Computer-Aided Design, Dec. 1988.

State Encoding Algorithm: Computing Edge Weights (Fanout-Oriented)

- **Fanout-oriented heuristic**: Present states that result in similar outputs and produce similar sets of next states are given high affinity
 - Intuition: Maximize the size of the most commonly occurring cube factors in the next-state and output logic

Next state set: Matrix that captures how often a (PS,NS) pair occurs Output set: How often an output bit is asserted in each PS

P5	N5 (Y_1Y_2	PO	(z)
(y_1y_2)	x=0	× =1	x=0	×=1
51	51	52	0	1
52	51	53	0	0
5₃	53	5,	0	1

$$NS_SET = \begin{pmatrix} S_1^n & S_2^n & S_3^n \\ S_1^p & 1 & 1 & 0 \\ S_2^p & 1 & 0 & 1 \\ S_3^p & 1 & 0 & 1 \end{pmatrix}$$

$$OUT_SET = \begin{pmatrix} z \\ S_1^p 1 \\ S_2^p 0 \\ S_3^p 1 \end{pmatrix}$$

State Encoding Algorithms: Computing Edge Weights (Fanout-Oriented)

Formula to compute edge weights

$$W_{i,j} = \frac{N_b}{2} \cdot NS _ SET(i) \cdot NS _ SET(j)^T + OUT _ SET(i) \cdot OUT _ SET(j)^T$$

N_b: # of encoding bits

NS_SET(i): ith row of NS_SET matrix

OUT_SET(i): ith row of OUT_SET matrix

$$NS_SET = \begin{pmatrix} S_1^n & S_2^n & S_3^n \\ S_1^p & 1 & 1 & 0 \\ S_2^p & 1 & 0 & 1 \\ S_3^p & 1 & 0 & 1 \end{pmatrix} \qquad \qquad W_{1,3} = 2$$

$$W_{2,3} = 1.[1 \ 0 \ 1][1 \ 0 \ 1]^T + [0][1]^T = 2$$

State Encoding Algorithm: Computing Edge Weights (Fanin-Oriented)

• **Fanin-oriented heuristic**: Next states that are produced by similar inputs and similar sets of present states are given high affinity

Present state set: Matrix that captures how often a (NS,PS) pair occurs Input set: How often a next state is caused for each input value

P5	N5 (Y ₁ Y ₂)	PO (z)		
(y ₁ y ₂)	x=0	× =1	x=0	x=1	
51	51	52	0	1	
52	51	53	0	0	
5₃	53	51	0	1	

$$PS_SET = \begin{pmatrix} S_1^p & S_2^p & S_3^p \\ S_1^n & 1 & 1 & 1 \\ S_2^n & 1 & 0 & 0 \\ S_3^n & 0 & 1 & 1 \end{pmatrix}$$

$$IN_SET = \begin{pmatrix} x & x' \\ S_1^n & 1 & 2 \\ S_2^n & 1 & 0 \\ S_3^n & 1 & 1 \end{pmatrix}$$

State Encoding Algorithm: Computing Edge Weights (Fanin-Oriented)

Formula to compute edge weights

$$W_{i,j} = N_b \cdot PS _SET(i) \cdot PS _SET(j)^T + IN _SET(i) \cdot IN _SET(j)^T$$

N_h: # of encoding bits

NS_SET(i): ith row of NS_SET matrix

OUT_SET(i): ith row of OUT_SET matrix

$$PS_SET = \begin{pmatrix} S_1^p & S_2^p & S_3^p \\ S_1^n & 1 & 1 & 1 \\ S_2^n & 1 & 0 & 0 \\ S_3^n & 0 & 1 & 1 \end{pmatrix}$$

$$IN_SET = \begin{pmatrix} x & x \\ S_1^n & 1 & 2 \\ S_2^n & 1 & 0 \\ S_3^n & 1 & 1 \end{pmatrix}$$

$$W_{1,3} = 2.[1 \ 1 \ 1][0 \ 1 \ 1]^T + [1 \ 2][1 \ 1]^T = 7$$

State Encoding Algorithm

Algorithm for computing state encoding

- 1. Select the state for which sum of weights of N_b heaviest incident edges is maximum
- 2. Arbitrarily assign a code to it and assign adjacent codes to N_b adjacent states
 - If some adjacent states have already been assigned codes, consider them when assigning a code to the selected state
- 3. Remove the state and edges selected in step 1 from the graph
- 4. Go to 1 and repeat, until graph is empty
- How well does this work in practice? $001(S_0)$
 - 30-40% lower literal count in the combinational logic (after multi-level optimization) compared to random state encoding

 $N_b = 3$ Pick S_3 (6+2+4) $S_3 \rightarrow 000$ $S_0 \rightarrow 001$ $S_1 \rightarrow 010$ $S_2 \rightarrow 100$

S. Devadas, et al, "MUSTANG: state assignment of finite state machines for optimal multi-level logic implementations," IEEE Transactions on Computer-Aided Design, Dec. 1988.

ECE 595Z: Digital Systems Design Automation, Spring 2012

Summary: FSM synthesis

- State minimization
 - Completely specified FSMs: equivalent states
 - Incompletely specified: compatible states
- State encoding
 - Create opportunities for two-level and multi-level minimization algorithms to optimize the next state and output logic
- FSM-based synthesis is usually used only for control logic

Optimizing Structural Representations of Sequential Networks

Limitations of FSM synthesis

- FSM representation is too large for most circuits
 - Only parts of the design (e.g., control logic) with small state spaces can be represented as an FSM
 - Data-paths have HUGE state spaces
- Two key advances have extended the scale of FSMs that can be handled
 - Implicit representations (BDDs)
 - Network of interacting FSMs
- Even with these advances, FSM synthesis is not applicable to large circuits (> 1000s of FFs)

Structural Approaches to Sequential Circuit Optimization

- Optimize combinational logic using sequential Don't Cares
- Retiming
- Retiming & Re-synthesis

Retiming

- Recall De Morgan's law?
 - Moving "bubbles" across gates

- It turns out you can do the same thing with flip-flops!
 - Does not change I/O behavior

C. E. Leiserson, F. M. Rose, and J. B. Saxe, "Optimizing synchronous circuitry by retiming," Proc. 3rd Caltech Conf. on VLSI, 1983.

Retiming: Why?

- Re-position the flip-flops in the circuit to more "optimal" points
 - Increase the clock frequency
 - Reduce the number of registers

– ...

Retiming: Example

