
© 2012 Anand Raghunathan ECE 595Z: Digital VLSI Design Automation, Spring 2012 

ECE 595Z 
Digital VLSI Design Automation 

 
Module 5 (Lectures 14-20): Multi-level Synthesis 

Lecture 18 

Anand Raghunathan 
MSEE 348 

raghunathan@purdue.edu 
1 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Lecture 17: Re-cap 

• Can we go beyond the Algebraic Model? 
 

• The algebraic model enables efficient (fast) 
transformations of a Boolean network 
– Collapsing/elimination, extraction/decomposition, 

substitution, … 

• However, it is limited in the scope of optimization 
since it does not take advantage of the unique 
properties of Boolean algebra. 

2 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Lecture #17: Re-cap 

• Boolean Division 
– Boolean division and factoring are much harder than 

algebraic counterparts 
– Number of Boolean divisors/factors can be very large 
– Boolean division can be indirectly performed using 2-level 

minimization 

• Boolean Optimization Using Implicit Don’t 
Cares 
– Implicit don’t cares are introduced due to the network 

itself 
– We saw how to derive don’t cares at a node’s inputs by 

looking at it’s fanin nodes 
– A node can be simplified using its implicit don’t cares 

3 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs: Example 

• What if we know a little about the 
network structure? 
– Look at “impossible” values of a, b, X 
– Project to the inputs of the node f 
– Use projected DCs to simplify node f 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

a 

abX 
000 
001 
010 
011 
100 
101 
110 
111 

possible? 

XbY 
000 
001 
010 
011 
100 
101 
110 
111 

possible? 

4 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs 
• What if we know even more about the network? 

abX 
000 
001 
010 
011 
100 
101 
110 
111 

possible? XbY 
000 
001 
010 
011 
100 
101 
110 
111 

possible? 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

Y = b+ c c 

bcY 
000 
001 
010 
011 
100 
101 
110 
111 

possible? 

5 

a 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs 

• Can we simplify f 
further now? 

f = Xb + bY + XY 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

a 

Y = b+ c c 

f = 

Add don’t 
cares & 
simplify 

6 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs 

• Let’s add information 
about the nodes “after” f 

• When does the output of 
f actually “matter” to the 
primary output Z? 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

a 

Y = b+ c c 

Z = fXd 

d 

7 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs 

• Which input 
combinations 
to f make the 
output Z 
insensitive to 
it? 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

a 

Y = b+ c c 

Z = fXd 

d 

XbY 
000 
001 
010 
011 
100 
101 
110 
111 

Z insensitive to f? 

8 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs 

• Can we simplify f 
further now using ALL 
the don’t cares we 
have identified? 
 

f = Xb + bY + XY 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

a 

Y = b+ c c 

Z = fXd 

d 

f = 

Add don’t 
cares & 
simplify 

9 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Informal Introduction to DCs 
• What happened? 

– f and Y were redundant due to the context 
imposed by the Boolean network! 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 
a 

Y = b+ c c 

Z = fXd 

d 

X 

b 

X = ab 

a 

Z = Xd 

d 
10 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Summary : Implicit Don’t Cares 

• Arise due to constraints imposed by 
the Boolean network on each of it’s 
nodes 

• Satisfiability don’t cares 
– Caused due to combinations of input 

values to a node that can never occur 
• Observability don’t cares 

– Caused due to input combinations that 
make the node’s output un-observable at 
the circuit’s primary outputs 

11 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Satisfiability Don’t Cares 
• Given a Boolean network with n primary inputs 

and k nodes 
• The “state” of the circuit is the set of values on all 

inputs and node outputs 
– v ∈ Bn+k 
– However, not all points in Bn+k are feasible 

• Only Bn are feasible (input values fully determine circuit 
state) 

– The remaining points are called Satisfiability Don’t 
Cares (SDCs) 

n inputs 

k nodes 

Boolean 
network 

2n+k 

SDCs 

feasible 
circuit 
states (2n) 

12 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Satisfiability Don’t Cares 

• Finding the SDCs of a 
Boolean network 
– For each node, list 

inconsistent assignments of 
inputs and outputs 
• Example: yi = ab 
• SDCi = yi’ab + yia’ + yib’ 

– SDC = ∪i SDCi for i ∈ all nodes 
in the network 

– Not specific to a node 

 
• The set of all SDCs is huge 

for practical sized networks 

gi 
a 

b 

13 

yi 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Observability Don’t Cares 
• Some terminology 
• Given a node i in a Boolean network 

– Let yi be a literal representing the output of node i 
– Let gi be the local function at node i, i.e., the node 

output expressed in terms of the node inputs 
– Let Gi be the global function at node i, i.e., the node 

output in terms of the circuit’s primary inputs 
 

gi 
yi 

yi = gi(node input vars) 
    = Gi(primary input vars) 

Primary inputs Primary outputs 

14 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Observability Don’t Cares 
• Remember Co-factors? 

– Here’s a chance to apply 
them! 

• Let POj, j ∈ {1 … m} be the 
primary outputs 

• For input values where 
(GPOj)yi = (GPOj)yi’ , the node 
output is not observable at 
POj 

– This is an observability don’t 
care for node i w.r.t POj  

• The ODC for node i is given 
by 
– ODCi = ∩j ((GPOj)yi = (GPOj)yi’) 

 

gi 
yi = 0 

gi 
yi = 1 

= 

= 

PO1 

POm 

15 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Optimization Using Implicit Don’t Cares 

• General idea: Use two-level 
minimization for the SOP expressions 
in each node of the network 
– Boolean division 
– Node simplification 
 

16 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Boolean Division using DCs 
• For a given node in a Boolean network 

– gi: local function at the node 
– SDC and ODCi (in terms of all the 

variables of the network) 
• Think of all nodes as functions of all 

the variables (not just the local inputs) 
• Perform two-level minimization using 

SDC ∪ ODCi as the don’t care set 
• Net effect of this is simultaneous 

Boolean division of gi by all other 
nodes in the network 

• PROBLEM: This can introduce 
combinational cycles into the network! 
– Solution: When optimizing node i, do 

not include SDCi and SDCs of all the 
nodes in the transitive fanout of node i 

Optimize 
using 
DCs 

gi 
yi 

gi 
yi 

gj 

Trivial result: 
yi = yi 
 

17 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Node Simplification using DCs 
• Again, use two-level minimization using SDC and 

ODC 
– To perform (local) node optimization, DCs need to be 

specified only in terms of the node’s inputs 
– However, SDC and ODCi are in terms of ALL variables in the 

network! 
• Need to eliminate variables other than node inputs 

 
• Question: Which operations (that we learned in 

class) have the effect of eliminating a variable from a 
function? 
– Answers: ____________________ 

• Question: Which one should we use here? 
– Answer: _____________________ 

 
18 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Quantification 
• Two more functions of Shannon co-

factors 
– fxi 

. fxi’
 = 1 specifies when f = 1 independent 

of the value of xi 

   f(x1 … xi-1, xi =1, xi+1 … xn) = 1 AND 
   f(x1 … xi-1, xi =0, xi+1 … xn) = 1  
– Called Universal quantification or 

Consensus 
 

– fx + fx’ = 1 specifies when f = 1 for at least 
one value of xi 

   f(x1 … xi-1, xi =1, xi+1 … xn) = 1 OR 
   f(x1 … xi-1, xi =0, xi+1 … xn) = 1 
– Called Existential quantification or 

Smoothing 

')( xx fffx ⋅=∀

')( xx fffx +=∃

Ca(f) 

Sa(f) 

19 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Node Simplification using DCs: Example 
• Example 

– SDCX = Xa’ + Xb’ + X’ab 
• Eliminating a from SDCX :  

 

– SDCY = Yb’c’ + Y’b + Y’c 
• Eliminating c from SDCY : 

f = Xb + bY + 
XY 

X 

b 
Y 

f 

X = ab 

Y = b+ c c 

DCs used to simplify node f : 
______________________ 

a 

20 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Practical Considerations 
• Computing and representing the entire set 

of SDCs and ODCs can be very slow and 
require a lot of memory 
– Even using implicit representations like BDDs 

• In practice 
– Do not attempt to compute the complete DC set. 

• Look at a limited size “environment” of the node 

– Use “filters” to only compute relevant DCs. 

21 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Further Reading : Don’t Cares 

• De Micheli, Chapter 8.4.1 
• Hachtel & Somenzi, Chapter 11.3 

 
• NOTE: De Micheli uses the term 

“Controllability Don’t Cares” for SDCs 
– Strictly speaking, CDCs = SDCs ∪ 

Explicit don’t cares specified on primary 
inputs 

22 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Prime and Irredundant Networks 

• Recall that each node in the Boolean network is 
represented by an SOP expression or a cover 

• The node is locally prime and irredundant (PI) if 
no literal or cube can be deleted from the SOP 
expression without changing the local function 

• The node is prime and irredundant w.r.t. the 
entire network if no literal or cube can be deleted 
from the SOP expression without changing the 
global function for some primary output 

• Question: Which of the above two conditions is 
stricter? 

 

• A Boolean network is prime and irredundant if 
each node is PI w.r.t. the network 
 23 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Prime and Irredundant Networks 

• Example 

g1 
a 

b 

g2 

g3 

c 

Are g1, g2, and g3 locally 
prime and irredundant? 

Are g1, g2, and g3 prime 
and irredundant w.r.t. the 
network? 

g1 
a 
b 

g3 c 

24 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Prime and Irredundant Networks 

• Theorem: If the SOP expression for a node 
gi in a Boolean network is made prime and 
irredundant using SDC and ODCi, then it is 
prime and irredundant w.r.t. the network 
 

• Prime and irredundant networks are 
desirable for multiple reasons 
 
 

25 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Multi-level Minimization and Testability 
• Recall that we would like to test 

fabricated instances for 
manufacturing defects 
– Need to generate test vectors 
– Commonly used: Stuck-at fault 

model 

 

b 

c 
d 

out s-a-0 

a 

• Theorem: A prime and irredundant Boolean 
network is 100% testable for single stuck-at faults 
at all node inputs and outputs 
– Test vector exists to detect each stuck-at fault 

• Theorem: Algebraic transformations preserve single 
stuck-at fault testability (and the test set!) 

26 



ECE 595Z: Digital VLSI Design Automation, Spring 2012 

Other Approaches to Boolean 
Optimization 

• Perturbation 
– Change the local function at a 

node from gi to hi 
• OK if gi ⊕ hi ⊆ (SDC ∪ ODCi) 

 
• Redundancy Addition and 

Removal 
– Identify redundant s-at faults 
– Simplify circuit by propagating 

“constant” values 
– Add redundant connections to 

create new opportunities 
• Use don’t cares to ensure that added 

connections do not change a function 
at the primary outputs 

gi 

hi 

gi 

27 


	ECE 595Z�Digital VLSI Design Automation��Module 5 (Lectures 14-20): Multi-level Synthesis�Lecture 18
	Lecture 17: Re-cap
	Lecture #17: Re-cap
	Informal Introduction to DCs: Example
	Informal Introduction to DCs
	Informal Introduction to DCs
	Informal Introduction to DCs
	Informal Introduction to DCs
	Informal Introduction to DCs
	Informal Introduction to DCs
	Summary : Implicit Don’t Cares
	Satisfiability Don’t Cares
	Satisfiability Don’t Cares
	Observability Don’t Cares
	Observability Don’t Cares
	Optimization Using Implicit Don’t Cares
	Boolean Division using DCs
	Node Simplification using DCs
	Quantification
	Node Simplification using DCs: Example
	Practical Considerations
	Further Reading : Don’t Cares
	Prime and Irredundant Networks
	Prime and Irredundant Networks
	Prime and Irredundant Networks
	Multi-level Minimization and Testability
	Other Approaches to Boolean Optimization

