The Electrode Interface II

Lecture 17

R. Edwin García redwing@purdue.edu

The Electrode-Electrolyte Interface

The Butler-Volmer Relation

$$Li \rightleftharpoons Li^+ + e^-$$

Detailing the rate at which Li intercalates

$$LiM \leftrightarrows e^- + Li^+ + M$$

$$i_{\circ} = Fk_r(c_T - c_s)^{\alpha_a} c_s^{\alpha_c}$$

The simplest interfacial kinetics

$$\vec{J} \cdot \hat{n} = i_{\circ} \left(\exp\left(\frac{\alpha_a F z \eta}{RT}\right) - \exp\left(-\frac{\alpha_c F z \eta}{RT}\right) \right)$$

Effect on the Electrode Material

 $\frac{\partial c}{\partial t} = A(\eta, T)c^{1/2}(1-c)^{1/2}$

Effect on the Battery

$$\frac{\partial c}{\partial t} = A(\eta, T)c^{1/2}(1-c)^{1/2}$$

Tafel Kinetics

Butler-Volmer Kinetics:

$$\vec{J} \cdot \hat{n} = i_{\circ} \left(\exp(\frac{\alpha_a F z \eta}{RT}) - \exp(-\frac{\alpha_c F z \eta}{RT}) \right)$$

 $i_{\circ} = Fk_r(c_T - c_s)^{\alpha_a} c_s^{\alpha_c} c_e^{\alpha_a}$

if
$$\alpha_a = \alpha_c = 1/2$$
 and $\frac{Fz\eta}{RT} \ll 1$

$$\vec{J} \cdot \hat{n} = i_{\circ} \frac{F z \eta}{RT}$$

environmental • failure analysis & prevention • health • technology development

Exponent®

Understanding Lithium-Ion Degradation and Failure Mechanisms by Cross-Section Analysis

Quinn Horn

Kevin White

Exponent, Inc. Natick, Massachusetts

211th Meeting of the Electrochemical Society May 8, 2007

Field Failure of a Notebook Battery Pack

Cell M2 is the "sister cell" to the failed cell (i.e. M1 and M2 were in parallel and therefore experienced the same voltage conditions)

Sister Cell

Exponent

Failed Cell

In Situ Experiments

S. J. Harris, A. Timmons, D. R. Baker, and C. Monroe. Direct in situ measurements of Li transport in Li-ion battery negative electrodes. Chem. Phys. Lett., 485(4-6):265–274, January 2010.

incubation

nucleation

Lithium Dendrites

M. Dolle, L. Sannier. B. Beaudoin, M. Trentin, and J. M. Tarascon. Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/ Polymer Cells. Electrochemical and Solid-State Letters, 5:A286-A289, 2002

F. Orsini, A. Du Pasquier, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, and P. Notten. In Situ Scanning Electron Microscopy (SEM) Observation of Interfaces within Plastic Lithium Batteries. Journal of Power Sources, 76:19-29,1998

Tip-Controlled Dendritic Growth

t=100 hours

t=83 hours

M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J. M. Tarascon, R. Bouchet, and S. Lascaud. Dendrite Short-circuit and Fuse Effect on Li/Polymer/Li Cells. Electrochimica Acta, 51:5334-5340, 2006

^{1.2}mm

Base-Controlled Dendritic Growthe

t=600s

t=720s

t=840s

t=1140s

t=1320s

t=0min

t=160min

t=200min

O. Crowther and A. C. West. Effect of Electrolyte Composition on Lithium Dendrite Growth. Journal of The Electrochemical Society, 155(11):A806-A811, 2008

M. Dolle, L. Sannier, B. Beaudoin, M. Trentin, and J. M. Tarascon. Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells. Electrochemical and Solie-State Letters, 5:A286-A289, 2002

Dendrite Growth Mechanisms

- Tip-Controlled:
 - Dendrite grows at the tip.
 - Base remains the same.
- Base-Controlled:
 - Dendrite is extruded at the base.
 - Tip remains the same.