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Lecture 29: Re-cap 

• Virtually every IC design today is 
impacted by power consumption 

• Role of design automation 
– Power estimation 
– Power reduction 

• Power estimation at the logic level 
– Power depends on values and transitions 

at signals in the circuit 
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Approaches to Power Estimation 
• Simulation-based 

– Given (user-provided) test benches 
• Simulate the circuit (modeling gate delays) 

– Online: Evaluate power models during simulation 
– Offline: Record switching activities and signal probabilities 

during simulation and post-process to estimate power 

• Problem: Long test benches may be 
necessary, can be very slow 

• Solutions 
– Statistical sampling of input traces 

• Still requires simulation of shorter traces 

– Probabilistic analysis of circuits 
• Static (does not require simulation) 
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Approaches to Power Estimation 

• Probabilistic analysis 
– Compute “average” switching activities and value 

probabilities at internal signals in the circuit 
– Evaluate power models 

• Advantage: No simulation needed (fast), no need for 
test bench 
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Value Probabilities 

• Define Px as the probability that signal x=1 
• Value probability at a gate output can be 

computed using probabilities at its inputs 
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AND gate:   PI = PA*PB 
OR gate: PJ = PB + PC 

A, B, C are uncorrelated (we will re-visit this since it is not valid for sequential 
circuits) 

Assumption:  
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Value Probabilities: Spatial Correlation 

• In general, the inputs to a 
gate may be correlated 
– Failure to account for the 

correlation will lead to an 
incorrect estimate for the 
probability at the gate output 
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I and J are correlated since both depend on B 

PK ≠ PI*PJ 
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Computing Value Probabilities 
Considering Spatial Correlation 

• Procedure for computing value probability 
considering correlations 
1. Write a Boolean expression for the signal in terms of primary 

inputs 
2. Convert the expression into a disjoint SOP expression (cubes are 

pair-wise disjoint, i.e., intersection is NULL) 
3. Compute the output probability for the disjoint SOP expression 
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F = ab + bc 

F = ab + a’bc PF = Pa*Pb + (1-Pa)*Pb*Pc 

Disjoint cubes can 
be obtained from a 
__________ 
representation 

PF = Pa*Pb + Pb*Pc 
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Computing Switching Activities Considering 
Gate Delays and Correlations 

• First, consider zero-delay model 
– All gate outputs switch instantaneously after 

input vector is applied 
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Sf(t=T) = f(t=0) ⊕ f(t=T) = ( a(0) b(0) ) ⊕ ( a(T) b(T) )  

Sh(t=T)  = h(t=0) ⊕ h(t=T) = ( a(0) b(0) + c(0) ) ⊕ ( a(T) b(T) + c(T))  

Under the zero-delay model, switching activity at a gate output is just 
the probability of the switching function evaluating to True  

a(0) 
b(0) 
c(0) 

a(T) 
b(T) 
c(T) 

Switching functions for f and h: 
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Computing Switching Activities Considering 
Gate Delays and Correlations 

• Now, consider general delay model 
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f(0) = a(0) b(0) 
f(T) = a(0) b(0) 
f(T+1) = a(T) b(T) 

h(0) = f(0) + c(0) 
h(T) = f(0) + c(0) 
h(T+1) = f(T) + c(T) 
h(T+2) = f(T+1) + c(T) 

Sf(1) = f(T) ⊕ f(T+1) 

Sh(1) = h(T) ⊕ h(T+1) 
Sh(2) = h(T+1) ⊕ h(T+2) 

Nf = P(Sf(1)) 

Nh = P(Sh(1)) + P(Sh(2))  

Switching activity for a signal is the sum of all its switching function 
probabilities 

a(0) 
b(0) 
c(0) 

a(T) 
b(T) 
c(T) 

Switching functions 
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Computing Switching Activities Considering 
Gate Delays and Correlations 

• For each gate 
– Enumerate potential times at which gate 

can switch. 
– For each potential switching time 

• Construct gate switching function 
– Boolean expression that represents conditions for 

gate switching 
– Function of current and previous input vectors 

• Compute probability of the gate switching 
function evaluating to True 

– Compute switching activity as sum of all 
switching function probabilities 
 10 
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Sequential Circuits 

• Two additional challenges 
– Need to compute probabilities at 

present state lines 
– Account for temporal correlation 

between values appearing at PS lines 
in one cycle and the next 
• PS(T) = f (PS(0), PI(0)) 
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Computing Present State Input Probabilities 

• Exact method 
– Extract the state transition graph (STG) from the 

circuit 
– Compute state probabilities by solving 

Chapman-Kolmogorov equations 
 
 
 
 
 

– Use state probabilities and state encoding to 
compute present state input probabilities 
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Computing Present State Input Probabilities: 
Example 
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Computing Present State Input Probabilities: 
Example 
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Note that PS lines are correlated. For example: 
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Computing Present State Input 
Probabilities 

• STG is very large for most practical circuits 
– Approximate method: Compute probabilities at 

PS inputs independent of each other 
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Computing Present State Input 
Probabilities 

• Set of non-linear equations 
– Use iterative techniques (Newton-

Raphson) 

16 
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Computing Present State Input 
Probabilities 
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Express NS probabilities in 
terms of PS probabilities 

Solve 
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Modeling Temporal Correlation at 
Present State Inputs 

• Create an additional copy of the next-
state logic to feed the equations that 
represent the switching functions 

18 

Switching 
 
Function 
 
Equations 
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Summary: Power Estimation 

• Power estimation requires accurate computation of 
switching activities and value probabilities at 
internal signals 
– Simulation is the most commonly used approach, but 

often too slow 
– Probabilistic analysis leads to one-shot computation of all 

switching activities and value probabilities 
• Challenges: Spatial correlations due to re-convergent fanout 

within circuit, computing probabilities at present state 
inputs, temporal correlation at present state inputs 

– Alternative: Statistical sampling 

• Both probabilistic and statistical techniques work 
well for large circuits, and are used in practice 

19 
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Automatic Power Reduction 
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Outline 

• Technology mapping for low power 
• Clock gating 
• Pre-computation 
• Operand Isolation 

21 

All of the above techniques reduce the switched capacitance in the circuit, and 
are hence complementary to frequency and supply voltage scaling 
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Technology Mapping for Low Power 
• Key idea: A desirable mapping results in high 

switching activity nets having low capacitance 
– Get “hidden” inside cells 
– Driven/loaded by smaller gates 
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Cell Area O/p Cap.      I/p Cap. 
INV 928 0.1029          0.0514 
NAND2 1392 0.1421        0.0747 
AOI22 2320 0.3410        0.1033 

Area = 
Power =  

Area = 
Power =  
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Technology Mapping for Low Power 
• Simple extension of mapping for area 

– Before mapping, compute switching activity at all signals 
in the subject graph 

– During mapping, use Power(match) = ∑ i ∈pins(match) Ci*Ni 

23 

int min_power_map(v, P){ 
/* v is a vertex in the tree, P is the set of pattern graphs */ 
 best_cost = infinity; 
 foreach(m = match(v, P)) { 
     cost(m) = Power(m) + Σvi ∈ inputs(m) min_power_map(vi, P) ); 
     if(cost(m) < best_cost){ 
   match(v) = m; 
  best_cost = cost(m); 
     } 
 } 
 return best_cost; 
} 
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Technology Mapping for Low Power 

• Extensions 
– If Ci (power coefficients) depend on 

output load, use similar approach as 
technology mapping for delay 
• Discretize range of possible loads and 

compute best match for each 

– Considering leakage power:  
• Modify Power(m) to consider leakage in 

addition to switched capacitance 

– Multi-Vdd and multi-Vth mapping 
• Model as richer library 

24 
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Clock Gating 
• Clock (distribution network 

+ FF loads) can account for 
a significant portion of the 
total circuit’s power 
– > 33% in a high-performance 

microprocessor 
– Huge capacitance (need to 

route all over the chip, 
buffers), high activity (2 
transitions per cycle) 

25 

Power breakdown for LEON2 
embedded processor core 
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Clock Gating 
• Basic idea: Suppress the clock signal from 

propagating through a part of the clock network 
– Question: When can you do this? 
 

 

26 

Combinational 
Logic 
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Clock Gating 
• Two different approaches 

– PSi ⊕ NSi tells you when the 
output of the FF will change 

– Sequential ODCs for the 
output of a FF tell you when 
it’s value is not useful 

• Approximate (fast) method 
– Look for self-loops and derive 

sensitization conditions  

27 



ECE 595Z: Digital Logic Synthesis, Spring 2012 

Pre-computation 
• Take clock gating to the next level 
• Selectively pre-compute the output of the 

circuit (using simpler circuits) one cycle in 
advance, and disable the original circuit 

28 
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Example: Comparator 

• MSBs alone 
can 
determine 
the output if 
they are 
unequal 

29 
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Pre-computaton: Automatic generation 
of Conditions 

• Problem: Given f(x1, …, xn) and k, the number of inputs to 
the pre-computation logic, determine: 
– The inputs S to the precomputation logic 
– The precomputation logic functions g1 and g2 
– Find S = { x[1], …, x[k] } that maximizes prob( g1(x[1], …, x[k]) + g2(x[1], 

…, x[k]) = 1 ) 

 
• Recall the Universal Quantification (consensus) of a function 

f with respect to a variable x  
– ∀x(f) = fx ∩ fx’ 

• Predictor functions can be generated as 
– g1 = ∀ xj[k+1] xj[k+2]… xj[n] (f) 
– g2 = ∀ xj[k+1] xj[k+2]… xj[n] (f’) 
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Summary: Power Reduction 

• Logic-level power reduction techniques 
focus on reducing the switched capacitance 
– Technology mapping for power 
– Automatic generation of clock gating, pre-

computation logic, operand isolation logic 
– Commercial state-of-the-art: Technology 

mapping, automatic clock gating 
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Outline 

• Logic synthesis is a fairly mature area 
• New challenges arise due to 

– Technology scaling trends 
• Increase in interconnect delay/power 

– Need for tighter integration with physical design, 
more accurate models 

• Process variations 

– Increase in circuit complexity 
• Saturation in clock frequencies of computing 

platforms that run tools 
• Need to parallelize algorithms 

 
33 
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Interconnect delay/power trends 

• Interconnect delay scales slower than gate delay 
– Global interconnects could become slower 

34 
Source: ITRS Roadmap 
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Traditional Design Flow: Separation of Logic 
and Physical Design 

• Earlier steps use approximate prediction models for 
interconnect (e.g., wire load models in logic synthesis) 

35 
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The Timing Closure Problem 
• Sometimes, timing appears to be OK during 

earlier stages, but fails during later stages 
– Need to repeat / iterate one or more stages to fix 

timing problems 

36 

Example: 

White lines indicate timing violations Source: Synopsys 
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Addressing Timing Closure 

• Tighter integration 
of logic synthesis 
and physical 
design 
– Placement during 

technology 
mapping 

– Constant-delay 
synthesis 
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Physical Synthesis 

RTL (Timing) Constraints 

Place-and-Route 
Optimization 

Layout 

Netlist with  
Place-and-Route Info 

Macromodules 
Fixed netlists 
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Nanometer Design Challenges :Variation in Process 
Parameters (Source: Kaushik Roy) 

Inter and Intra-die 
Variations 
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Device parameters are no longer deterministic 
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Impact of Process Variations 

• Need to 
consider 
statistical 
models of 
delay, 
power! 
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Dealing with Variations: Statistical 
Timing Analysis 

• Traditional approach: Corners 
– Use best-case, worst-case, and typical-

case values 

• Problem: As spread of distribution 
increases, this leads to highly 
conservative estimates, incorrect 
critical paths, and over-design 

40 

Estimated 

Manufactured 
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Statistical Timing Analysis and Design 

• Model delays of gates as 
probability distributions 

• Statistical Timing 
Analysis: Compute delay 
distribution for entire 
circuit 

• Statistical Optimization: 
Improve design 
considering overall delay 
distribution rather than 
worst-case delay 

41 

Statistical 
Timing Analysis 
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Parallelizing EDA 
• EDA tools cope with 

increase in complexity by 
leveraging better 
algorithms and faster 
computers 
– Performance via parallelism 

is the new paradigm 

• Focus on parallelizing the 
core algorithms in EDA 
– Graph algorithms (sis 
– Backtrack / B&B (SAT, 

ATPG, ESPRESSO) 
– Dynamic Programming ( 
– Linear Algebra (Placement & 

Routing, Circuit Simulation) 
42 

Optimization Agents acting on a 
repository: A model for parallel EDA 

Catanzaro et. al., “Parallelizing CAD: A Timely 
Research Agenda for EDA,” DAC 2008. 
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Summary 

• Digital Logic Synthesis is a mature 
area 
– Strong foundation in algorithms and 

optimization techniques 
• Evolving nature of VLSI (scaling driven 

trends) keeps it a vibrant and active 
research area 
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