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Why is Power Important?

* My top 5 reasons

1. How many Hoover dams does it take?
. The true (economic) cost of power
. Anytime, Anywhere (or more for less)
. The end of (classical) scaling

aua » W N

. Power impacts correct IC operation
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ow many Hoover dams?




e Name: ENIAC

— First all-electronic,
Turing-complete
computer

e Built: Feb. 1946

e Speed: 5000
additions/sec

e Space: 1800 sq. ft.
e Weight: ~30 tons

- ' Power Consumed:
e 174,000 Watts

Avg. power consumption of a
US home: 1020W

\_
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and Now....

e Name: Earth
Simulator

— World’s fastest
supercomputer
(June 2002 — Nov
2004)

.. « Built: Feb 2002

e Speed: 35.61x1012
Flops

e Space: ~35000 sq.
ft.

Power consumed:
~13,000,000 Watts
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Earth Simulator Facilities

Users

Computer

Hhigis = o Lo — & fHARES

— Cooling

ZEIEREE (1475 X 244K) SPEMEE (R13000m)
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What if you design for power?

e Name: MP211

— First multi-core
processor for mobile
phones

e Built: Sep 2004
e Speed: > 10? Inst/sec
e Size: ~1 sq. cm.

Power: 0.12-0.25 Watts
(active), 0.00005 Watts
(idle)
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Societal Impact

e Environmental burden
— Total power consumption of CPUs in
world’s computers
e 2001: 9 Billion Watts ( > 4 Hoover Dams! )
e 2005: ~20 Hoover Dams

— Servers and associated infrastructure
« 123 Billion kwH worldwide in 2005 = over 170 Billion tons of CO,
(over 250 Billion kWH by 2010)

Fluorescent lighting: 200 Billion kWH
« 2010: Data centers use 1.3 percent of worldwide electricity

\_

[Source: Dataquest (for installed base) +

nsumatns for avg |nstallud CF‘U pc WEr]
cted with mil™ Power

http://www.greenpeace.org/
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Earth Day — April 22", 2012
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Green is IN!

ENERGY+
INNOVATION

New research
funding agency
(ARPA-E) formed -
$400 Million For Off
the Wall Energy Ideas

f P ;"{:-'."f“ ‘- i
THOMAS L.
FRIEDMAN

Hot, Flat,
«nd Crowded

WHY WE NEED A GREEN REVOLUTION —
AND HOW IT CAN RE CA
~— =

ECE 595Z: Digital Loagic Synthesis, Spring 2012

© 2012 Anand Raahunathan




The True (Economic) Cost of Power
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T
The True Cost of Power

ration Cost (%)

e Product Cost
— Packaging / cooling has
increased impact on IC
and system cost

raphics sUW

e Operation Cost

— $180/yr electricity bill
for an always-on PC " o a0

- $4-$8/Watt of load for _ Power (Wet)
data centers Packaging/cooling costs

 Replacement Cost

— Mean Time to Failure is Electromigration

halved for every 10 deg.
C increase in
temperature
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Anytime,
Anywhere

(More for

Less)

“By having the phone with you, you
should not need anything else but
your clothes!”

Takashi Natsuno
Managing Director
I-mode strategy
NTT DoCoMo

[Technology Review, July '04]

I-mode: Japan’s most successful
wireless internet service (46 M
subscribers)

\_
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Battery-powered Mobile Appliances
e Large portion of the electronics and semiconductor industries!
— Largest by volume
* Wireless handset sales: 990 million units in 2006
— Significant by revenue
¢ Semiconductors for handsets: $33 Billion in 2007
 Battery life is a primary concern
A
— Laptop PCs
o
1=
CED_
= Netbooks
%)
-
o
&
5 =
o e -
o Wireless
Sensors
Functionality, Performance
\_ >/
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Evolution of Mobile Applications &

Services

... + wallet/purse

+
... T Internet + SEnSor
multimedia Web services
Traffic surveillance
Email rSmart navigation
Mobile music Service monitoring
Digital TV Billing & Payment
+ organizer + IM | Mobile games E-wallet ¥
MMS | ~ Image recognition
Location-based services Image search

' ' Mobile commerce
SMS Ringtones, ringback

Calendar Browser
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The Battery Gap

Notes (0.57)(
Voice (1h)'

Energy Required (1 day) = 33,000J
Req. Battery Capacity ~ 2500 mAh

Standby (5h) Email (1h)

Idle (0.5h) /\
‘Web (1h)

Nkbps 2Mbps

battery capacities and energy needs
.g., fuel cells) may help, but not

_

MP3 (0.5h) Video (0.5h)

Interactive /’m video-
Conferencing

—

Collaboration
ideo email,
Voice recognition,

Mobile commerce __. ==
- -

/

lips 7/
7/
Ve

’l,/._a—"

-il—- Battery
capacity
(mAh)

=)~ Energy
requirement
(mAh)

ium

£ 3000 :
Downlink
S 2000 d0m|nated Web browser,
D P'W MMS, Video ¢
- Voice
I
1000
Lith
Available Battery Polymer
Capacity -
~1000 mAh LOOZ 2003

2004 2005 2006 2007

ECE 595Z: Digital Loagic Synthesis, Spring 2012



The End of Classical Scaling
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Historical Trends: IC Scaling

Transistors
Per Die
108 - 256M

64M .
107 Memory 16M @ Pentium® 1

® Microprocessor : A
108 H Pentium® |

_Pentium® Pro

256K Pentium®

10° 64K 486

105 4
102

101

1 OD 1 1 1 1
'97 2000

Source: Intel No exponential is
forever,
LE01 but you can delay
1.E-02 forever...
LEE —Gordon Moore

1.E+04

1.E+03

1.E+02

1.E+01

1.E-04

$/Transistor

1.E+00

1.E-05

1.E-01

1.E-06
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1.E-02
1960 1970 1980 1990 2000 2010
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are scaled equally

Voltage, V /I
¢ WIRING ¢
tnxﬂlﬂ. -
Wia
GATE |
T/ S T
R ", drain L
source R T
]‘ Lio—= /
p substrate, doping® N+ XelO
SCALING:
Voltage: Vi
Oxide: t,. /o

Wire width:  Wia
Gate width: Lo

Diffusion: Xy la
Substrate: ao®N

RESULTS:

Higher Density: -a°
Higher Speed: -a
Power/ckt: ~1/a*

Power Density:~Constant ]

\_

The End of (Classical) Scaling

e Classical scaling: All device dimensions and Voltage

— Ended due to unacceptable gate leakage, reliability, .
— Causes dramatic rise in power density with scaling

1000

100

10

0.1

0.01

Gate Length, Lgate {um)

Souce: Bernard Meyerson, “How Does One Define
"Technology” Now That Classical Scaling Is Dead (and
Has Been for Years)?”, DAC 2005 Keynote
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1000

~ 100
=
o
a
g loLpIALe | Atum®illl
=10
1

1.5p Ip 0.7n 0.5n  0.35p 0.25p  0.18u  0.13p 0.1p

0.07u

e This clearly unsustainable trend led to a

transformation in the computing industry that we
| now call “multi-core”
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Souce: Bernard Meyerson, “How Does One
Define "Technology" Now That Classical

Scaling Is Dead (and Has Been for Years)?”,

7
The End of (Classical) Scaling - Power Cliffs
e The switch from Bipolar to CMOS occurred
when power became a showstopper
— No viable alternative in sight this time!
14
BIESI0 @, CMOS
b Steam Iron Bipolar ]
5, 5W/em2
£ ty
2 5 Fujitses WP2000 | !
% IBM 30008 : [ENGPp 3
E - NTT IEr-'[EFc‘fﬁ an
I.i Cii
é - Star of ED:CIETESDTJ ‘1;;-"
5 Waler Coolin E::‘Emg-?w ~
IBM3TD gy (P
o R IENI - L N g | S9 Pantun I(DSP)
\l - -H’ear of m{n;t:uncenﬁnt_ _ ;
\ DAC 2005 Keynote
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Power Affects Design Complexity
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The Power Delivery Challenge

Increasing “battery gap”
for portak |

Algorithmii
10000000 ——

1000000

Power grid design a critical step (routing area vs.
—— " e|lecromigration tradeoff)
100000 / |

- = Shome,/ as9cs222 foroduct/ch 1 lpon/summus /kai fdatall /YR41208 /PEL /VR4 1208@1 , pel e i_l
10000 ’,” l," Eile Edit Wiew Analysis Report Help
1000 7%/ Jtayot =8 [ rower SH [ roung 3 E [ anaysis s % [ 1asseen | v [ 2451790 |
100 N B B e A | enalysisMode | IR-DROP | 100 % w WG
10 Ze =]
- ——
S &S ES s |
Sou
Morj| =
Packaging / cool

increased impact «

— Thrashold Control . H
» 17| 0| L ver inter-
EI r Histogram Control : jenCe
Distibute_ £ | _ Bar |
Total Integration Cost (3]
40
30
raphics BN
al |
DREM
" ETip+t ) Cpu ]
L
[i] 10 20 30 40
Power {(Watts)
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Speed-power Inter-dependence

Increasing  Tjming-power inter-dependence er delivery
forporta  poyer  I-R drop = Reduced Vdd for embedded  fesign
oo = cell = Increased delay
oo Power = higher temperature = lower speed

10000 -

1000 -

increase

Total Integratid
40

30

20

DREM

w7 Ch_ipJet ) =

Example: 595K gate design, 0.13um, Vdd=1.3V, Max I-R = 264mV
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Our focus in 595Z

e How can we automatically estimate
power consumption at the logic level?

 Synthesis (automatic) techniques to
reduce power.

\_
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Outline

e Power dissipation in CMOS circuits

 Estimating power consumption
— Power models for gates

— Estimating value probabilities and
switching activities

\_
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CMOS Power Consumption Basics

Power = Capacitive Switching Power +
Short Circuit Power + Leakage Power

i ) | )
! i
Dynamic Power Static Power
e Dynamic power dominated in > 90nm technologies

 Leakage has become an equal culprit in nanoscale CMOS

Source: Shekar Borkar,
“Microarchitecture and Design
Challenges for Gigascale
Integration”, MICRO 2004

€
&2
s
2
2
[
(m]
2
o
o
3
g
o
o

90nm 65nm 45nm 32nm 22nm 16nm

\_
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Capacitive Switching Power

e Power required to charge and discharge
capacitances

Vvdd vdd
Charging T
j T Current / \

- = - = -CD:ischa{g.ing
Energy required to charge load capacitance = Q*V 4,
= C "V 4a"Vag
Power = Energy/transition * transition rate  =C_ * V 42* f,_,;

=C.” Vddz* f* Py
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Capacitive Switching Power

 Over time, at any signal in the circuit, 0—1
and 1 — O transitions are equi-probable

v

Cap. Switching Power =
C, :Load Capacitance
V44 : Supply Voltage

N :Switching Activity (per. clock cycle)
f :Clock Frequency

.C|_.Vd2d.N.f

N -

C.N.f: Switched Capacitance
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Leakage Power

Substhresdal Cales leakage
\Xd leakage. "
H“-x_ | Hate
Beyirces | .“‘.h e | Dreain
-
. | e o i J
IN ouT . 1y r R f{ ;}x o ns
- .-"-I..
> sub Reverse-biased \ * / Reverse-biased
Gate Hh- junction BTBT N e BT
leak threshold ”
eakagé L |eakage 1 J
Builk

e Three major components
— Sub-threshold leakage
— Gate leakage

— Reverse-biased junction (Band-to-Band
tunneling)

\_
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Power Models for Gates

e Dynamic Power
— Unit capacitance
— Lumped output capacitance
— Pin-based model
— Transition-based model
— State-dependent model

 Leakage Power

— Constant

— Input-dependent (lookup table based on
gate input values)

\_
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Dynamic Power Models for Gates

e Unit capacitance (simplest _
model) —j__
— Technology-independent ?
— Power <} ., 5 N(g))

— Extension: add per-fanout
capacitance

« Lumped output capacitance
— Specified in technology library

e Pin-based model

. IN
. . . n ] HT
— Associate a capacitance with each / —‘|,—Cc,ut
N pin of the cell / gate c j,
Increasing accuracy

\_
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 Transition-based model
— Specify the power
consumption for each
possible transition at gate
inputs
— Exponential in number of
gate inputs

— Assumes that transitions
on different inputs are
either simultaneous or
separated enough in time
that they do not interact

\_

Dynamic Power Models for Gates

-
&

Transition

Power

00—01
00—10
00—11
01—00
01—10
01—11
10—00
10—01
10—11
11—-00
11 —01
11—-10
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Dynamic Power Models for Gates

e State-dependent model

— Accurately accounts for
effect of history on
internal signals within a
gate

— Requires a very accurate
simulator (e.g., SPICE)
to build this model

\_
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e Constant
— Depends on gate type

* [Input-dependent

— Look-up table based on
input values

— Considers stacking effect
and loading effect

\_

Leakage Power Models

Input

-
&

Leakage
Power

00
01
10
11
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Primary
Inputs X.
_t\> - 3
_‘/ y_ |
i

all gates g;

\_

P = Z denamic (g|) + IDleakage (g|)

Primary
Outputs

denamic (gl) — f (Ntransition (Xi )’ |\Itransition (y| )1 Ntransition (Zi ))
Preatege (01) = (P (%5, ¥; =00), P (x;, y; = 01),P (x,,; =10), P (x;, y; =11))

Power Estimation: What Else Do We
Need to Know?

e Value probabilities and switching activities
at signals inside the circuit

Note: Assume a pin-
based delay model for
dynamic power and an
input-dependent
leakage model

N
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Switching Activity Under Zero Delay

e Assuming zero gate 5 _‘E'j_ .
- 0O 2
delays, each gate output = L5 -7
can switch at most once N,(010,011)=
in each clock cycle N,(010,011)=

e Whether there is a
transition or not 9.
depends on current and Pl
previous input vectors 0 —

N,(010,110)=
N,(010,110)=

\_
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Switching Activity under General Gate
Delays

 Output of each gate may switch multiple times
for a single input vector pair (glitching)

t=0 g _
I - t=1
1 -3— I 9 11
TI=_EI E1 t=1 t=2
=0 t=1 t=1 t=2
_I_— 1 _l_ —I_I— t=2 t=3
i Dy Iy nipin
L 210 D_ t=4 t=5
t=1
I - gu
_Q_Dﬁ@_% t=3 t=4
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Glitching Example
 Data path circuits often dissipate a lot of
dynamic power due to glitching
Example: 16-bit ripple carry adder
A A A A e
I W U LTy
Ciy—e| AddD o Add1 —{ Add2 ¢ Addl4}p— Addi1d
T e e Toe  Tom
é 40 m
§ I:in'_r;v
-
\ Time, ns )38
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