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Why is Power Important? 

• My top 5 reasons 
1. How many Hoover dams does it take? 
2. The true (economic) cost of power 
3. Anytime, Anywhere (or more for less) 
4. The end of (classical) scaling 
5. Power impacts correct IC operation 
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How many Hoover dams? 

 

3 

How many Hoover dams? 
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Then … 
• Name: ENIAC 

– First all-electronic, 
Turing-complete 
computer 

• Built: Feb. 1946 
• Speed: 5000 

additions/sec 
• Space: 1800 sq. ft. 
• Weight: ~30 tons 

 

Avg. power consumption of a 
US home: 1020W 

Power Consumed: 
174,000 Watts 
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and Now…. 
• Name: Earth 

Simulator 
– World’s fastest 

supercomputer 
(June 2002 – Nov 
2004) 

• Built: Feb 2002 
• Speed: 35.61x1012 

Flops 
• Space: ~35000 sq. 

ft. 

Power consumed: 
~13,000,000 Watts 
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Earth Simulator Facilities 

Computer 

Users 

Cooling 
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What if you design for power? 

• Name: MP211 
– First multi-core 

processor for mobile 
phones 

• Built: Sep 2004 
• Speed: > 109 Inst/sec 
• Size: ~1 sq. cm. 

Power: 0.12-0.25 Watts 
(active), 0.00005 Watts 
(idle)  
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Societal Impact 
• Environmental burden 

– Total power consumption of CPUs in 
world’s computers 

• 2001: 9 Billion Watts ( > 4 Hoover Dams! ) 
• 2005: ~20 Hoover Dams 

 

 
 

 
– Servers and associated infrastructure 

• 123 Billion kWH worldwide in 2005 = over 170 Billion tons of CO2 
(over 250 Billion kWH by 2010) 

Fluorescent lighting: 200 Billion kWH 
• 2010: Data centers use 1.3 percent of worldwide electricity 
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http://www.greenpeace.org/ 
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Green is IN! 
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Earth Day – April 22nd, 2012 

New research 
funding agency 
(ARPA-E) formed - 
$400 Million For Off 
the Wall Energy Ideas 
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The True (Economic) Cost of Power 
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The True Cost of Power 

• Product Cost 
– Packaging / cooling has 

increased impact on IC 
and system cost 
 

• Operation Cost 
– $180/yr electricity bill 

for an always-on PC 
– $4-$8/Watt of load for 

data centers 
 

• Replacement Cost 
– Mean Time to Failure is 

halved for every 10 deg. 
C increase in 
temperature 

Electromigration 

Packaging/cooling costs 
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Anytime, 
Anywhere 
(More for 

Less) 

Takashi Natsuno 
Managing Director 

 i-mode strategy 
NTT DoCoMo 

i-mode: Japan’s most successful 
wireless internet service (46 M 
subscribers) 

“By having the phone with you, you 
should not need anything else but 

your clothes!” 

[Technology Review, July ’04] 
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Battery-powered Mobile Appliances 
• Large portion of the electronics and semiconductor industries! 

– Largest by volume 
• Wireless handset sales: 990 million units in 2006 

– Significant by revenue 
• Semiconductors for handsets: $33 Billion in 2007 

• Battery life is a primary concern 

Functionality, Performance 
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Evolution of Mobile Applications & 
Services 
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+  organizer + IM Mobile games 
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… + Internet + 
 multimedia 
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MMS 
Location-based services 
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Image recognition 
Image search 
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Smart navigation 
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Service monitoring 
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… + wallet/purse 
+ sensor 

Mobile commerce 

Browser 
phone 

voice 
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The Battery Gap 
• Diverging gap between actual battery capacities and energy needs  

– New battery technologies (e.g., fuel cells) may help, but not 
enough! 
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The End of Classical Scaling 
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Historical Trends: IC Scaling 
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No exponential is 
forever,  
but you can delay 
forever… 
–Gordon Moore 
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The End of (Classical) Scaling 
• Classical scaling: All device dimensions and Voltage 

are scaled equally 
– Ended due to unacceptable gate leakage, reliability, … 
– Causes dramatic rise in power density with scaling 

 

18 

Souce: Bernard Meyerson, “How Does One Define 
"Technology" Now That Classical Scaling Is Dead (and 
Has Been for Years)?”, DAC 2005 Keynote 
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Trends: Power density & Heat 

• This clearly unsustainable trend led to a 
transformation in the computing industry that we 
now call “multi-core” 
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The End of (Classical) Scaling – Power Cliffs 

• The switch from Bipolar to CMOS occurred 
when power became a showstopper 
– No viable alternative in sight this time! 

20 

Souce: Bernard Meyerson, “How Does One 
Define "Technology" Now That Classical 
Scaling Is Dead (and Has Been for Years)?”, 
DAC 2005 Keynote 
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Power Affects Design Complexity 

21 
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The Power Delivery Challenge 

 

LOW-POWER 
DESIGN 

POWER 
ESTIMATION 

Source: 
MorphICs Inc. 

Increasing “battery gap” 
for portable products 

Timing-power inter-
dependence 

Packaging / cooling : 
increased impact on cost 

Power grid design a critical step (routing area vs. 
elecromigration tradeoff) 
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Speed-power Inter-dependence 

 

LOW-POWER 
DESIGN 

POWER 
ESTIMATION 

Source: 
MorphICs Inc. 

Increasing “battery gap” 
for portable products 

Complex power delivery 
system design 

Packaging / cooling : 
increased impact on cost 

 Timing-power inter-dependence 
Power ⇒ I-R drop ⇒ Reduced Vdd for embedded 
cell ⇒ Increased delay 
 Power ⇒ higher temperature ⇒ lower speed 

Example: 595K gate design, 0.13um, Vdd=1.3V, Max I-R = 264mV 

23 



ECE 595Z: Digital Logic Synthesis, Spring 2012 

Our focus in 595Z 

• How can we automatically estimate 
power consumption at the logic level? 

• Synthesis (automatic) techniques to 
reduce power. 
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Outline 

• Power dissipation in CMOS circuits 
• Estimating power consumption 

– Power models for gates 
– Estimating value probabilities and 

switching activities 
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CMOS Power Consumption Basics 

• Dynamic power dominated in > 90nm technologies 
• Leakage has become an equal culprit in nanoscale CMOS 

26 

 
Power Capacitive Switching Power +  

Short Circuit Power              + Leakage Power 
=     

                   

Source: Shekar Borkar, 
“Microarchitecture and Design 
Challenges for Gigascale 
Integration”, MICRO 2004 

Dynamic Power Static Power 
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Capacitive Switching Power 

• Power required to charge and discharge 
capacitances 
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Energy required to charge load capacitance = Q*Vdd 
                               = CL*Vdd*Vdd 

 
Power = Energy/transition * transition rate  = CL * Vdd

2 * f0→1 
     = CL * Vdd

2 * f * P0→1 
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Capacitive Switching Power 

• Over time, at any signal in the circuit, 0→1 
and 1 → 0 transitions are equi-probable 
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Leakage Power 

• Three major components 
– Sub-threshold leakage 
– Gate leakage 
– Reverse-biased junction (Band-to-Band 

tunneling) 
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Power Models for Gates 

• Dynamic Power 
– Unit capacitance 
– Lumped output capacitance 
– Pin-based model 
– Transition-based model 
– State-dependent model 

• Leakage Power 
– Constant 
– Input-dependent (lookup table based on 

gate input values) 
30 
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Dynamic Power Models for Gates 

• Unit capacitance (simplest 
model) 
– Technology-independent 
– Power ∝ ∑all gi N(gi) 
– Extension: add per-fanout 

capacitance 
 

• Lumped output capacitance 
– Specified in technology library 

 
• Pin-based model 

– Associate a capacitance with each 
pin of the cell / gate 
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Dynamic Power Models for Gates 

• Transition-based model 
– Specify the power 

consumption for each 
possible transition at gate 
inputs 

– Exponential in number of 
gate inputs 

– Assumes that transitions 
on different inputs are 
either simultaneous or 
separated enough in time 
that they do not interact 
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Transition    Power 
00→01        …. 
00→10        …. 
00→11        …. 
01→00        …. 
01→10        …. 
01→11        …. 
10→00        …. 
10→01        …. 
10→11        …. 
11→00        …. 
11→01        …. 
11→10        …. 



ECE 595Z: Digital Logic Synthesis, Spring 2012 

Dynamic Power Models for Gates 

• State-dependent model 
– Accurately accounts for 

effect of history on 
internal signals within a 
gate 

– Requires a very accurate 
simulator (e.g., SPICE) 
to build this model 

33 
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Leakage Power Models 

• Constant 
– Depends on gate type 

 
• Input-dependent 

– Look-up table based on 
input values 

– Considers stacking effect 
and loading effect 
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Primary 
Inputs 

Primary 
Outputs 

Power Estimation: What Else Do We 
Need to Know? 

• Value probabilities and switching activities 
at signals inside the circuit 
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Switching Activity Under Zero Delay 

• Assuming zero gate 
delays, each gate output 
can switch at most once 
in each clock cycle 

• Whether there is a 
transition or not 
depends on current and 
previous input vectors 

36 

N1(010,110)= 
N2(010,110)= 

N1(010,011)= 
N2(010,011)= 
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Switching Activity under General Gate 
Delays 

• Output of each gate may switch multiple times 
for a single input vector pair (glitching) 

37 
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Glitching Example 

• Data path circuits often dissipate a lot of 
dynamic power due to glitching 

38 

Example: 16-bit ripple carry adder 
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