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Why an atomistic approach?

Why an Atomistic approach?
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Why an atomistic approach?

e The miniaturization of devices has reached the point where the
number of atoms is countable.

atoms wide!!

, et al. “Ohm’s Law Survives to the Atomic Scale”, Science 6 January 2012, Vol. 335 no. 6064 pp. 64-67 DOI: 10.1126/science.1214319
PUR]BI-:]'/Eysicsforme.wordpress.com/2012/01/07/ohms-law-survives-to-the-atomic-scale/ @;?j’
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Multi-scale and Multi-Physics approaches

« Many modern devices can be considered as constituted of a fully

Contact Caontact

alnm alnm

T10nm T10nm
anm anm anm

PUR@‘g:@urdue.academia.edu/GerhardKIimeck/PaQers/1238240/Quantum and_semi-classical_transport_in_ NEMO_1-D %
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Multi-scale and Multi-Physics approaches

» Severe 1ch.

[001]

[, oo Darar

[100]

PUBM.IJEnan et al., “Moving Toward Nano-TCAD Through Multimillion-Atom Quantum-Dot Simulations Matching Experimental Data”, IEEE Transactions on - %
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Multi-scale and Multi-Physics approaches

4 N

o Strain experienced by an InAs dot inside a GaAs structure.
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What are the models implemented in NEMO5?

o Y

« NEMOS5 can be seen as a general framework so it can virtually
contain any number of model (solver).
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What are the models implemented in NEMO5?

o i [Lswar
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A 001 2. Schroedinger
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6 @ 4. NEGF

laterials | Domain Simulation

definition definition
T
Domains consist of regions
Every region has a material Domains go to solvers
Solvers
interaction

PURDUE Definition of solver input/output %‘
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Strain Models

K What is a strain? \

A crystal experiences strain when it undergoes some stress which

raises its internal energy in comparison to its strain-free reference
compound.
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Strain Models

Stranski-Krastanow Growth

Self-Assembly Process = InAs deposition on GaAs substrate
InAs (0.60583 nm)

L1111
saas

GaAs (0.56532 nm)

etting layer) ~ 1ML

= HHHH

T i Lfm

PURDUE GaAs
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Strain Models

@ N

Strategy:
We calculate the total energy of the crystal and find the atoms
position that minimize the total energy.
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Strain Models

@ N

Strategy:
We calculate the total energy of the crystal and find the atoms
position that minimize the total energy.
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Strain Models
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Strain Solver Options

name = strain

type = KeatingStrain
domain = atomic_structure
active regions = (1,2,3)

models = harmonic

UNIVERSITY
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Strain Solver Options

// Newton-Raphson parameters

linsolver _max _iters =
linear_solver =
preconditioner =
max _num_iters
absolute tol
relative tol =
linsolver_monitor

30000
bcgsl
jacobi
20000
1e-8
1e-8
true



Strain Solver Options

JA list that may contain the following: harmonic or
anharmonic_Lazarenkova or anharmonic_Areshkin

or anharmonic_Sui; stretch-bend; cross—-stretch;
coplanar-2ndNN; coulomb.

« Which linear solver is employed in the Newton iteration. See
the PETSc manual for possible choices - gmres is preferred.

. I’Which preconditioner is employed in the Newton iteration.
See the PETSc manual for possible choices - asm is preferred.
1u does not work for simulations with grid-parallelization.
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Strain Solver Options

. Absolute tolerance convergence criterion of the Newton iter-
ation.

. Relative tolerance convergence criterion of the Newton itera-
t1ion.
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Strain Solver Options

* More options in the manual...
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Electronic Structure

/Electronic structure of a device can be studied by means of \
Schroedinger-Poisson systems in tight-binding formalism.
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Electronic Structure

/Electronic structure of a device can be studied by means of \
Schroedinger-Poisson systems in tight-binding formalism.

Schroedinger equation - tight-binding.




Tight-Binding Method

» The underlying ideas of the tight-binding approach are:



http://thisquantumworld.com/wp/the-technique-of-quantum-mechanics/the-hydrogen-atom/�
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A few words on passivation

In-plane quantum well bandstructure
Bare surfaces Passivated surfaces

—— — p——— ——

Energy (eV)
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Energy (eV)

1
N

|
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4 6 8 0 , 2 4 6 3
in-plane momentum (1/nm) in-plane momentum (1/nm)

Result:
Surface states successfully shifted to high energies




Example: 1Dhetero
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Poisson Solver Options

name = poisson

type = Poisson

domain = continuum

active regions = (1,2,3)

ff outputs

fem output = (potential)
atomistic_output = (potential)
density solver = ()

UNIVERSITY



Poisson Solver Options

ksp_type = gmres

pc_type = 1lu

charge model = electron hole
rel tolerance = 1e-6

UNIVERSITY



Poisson Solver Options

boundary_ condition

L

type = ElectrostaticContact

name = sSguvrce

boundary regions = (1)

voltage = 9.0 /7 in Uolt
;
boundary_condition
1

type = ElectrostaticContact

name = drain

boundary regions = (2)

voltage = B.1 f/ in Uolt
¥

UNIVERSITY



Poisson Solver Options

* Save atom-based quantities to file. The list can
contain the entries potential, charge, charge cm-3,
free_charge, free_charge_cm-3, doping, doping cm-3,
conduction_band and valence_band. For simulations
without grid parallelization VTK is used as output format,
otherwise Silo.
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Poisson Solver Options

‘If true, then the potential is written to (sim-
name)_nodal_potential.dat.
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Poisson Solver Options

* Interpolates atom-based quantities onto an axis and gen-
erates 1D ASCII output compatible with 1D Matlab-
plots.  The list can contain the entries potential,
free charge cm-3, doping cm-3, conduction band and
valence_band.
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Poisson Solver Options

“If true then unit cells are used for the 1D discretization
along some direction and some averaging is done within
the cells. If false then the orthogonal projection of the
atomic position serves as the 1D discretization.
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Poisson Solver Options

* Linear solver type. See the PETSc documentation for pos-
sible choices. Recommended are e.g. gmres or bcgs.
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Poisson Solver Options

* Preconditioner type. See the PETSe documentation
for possible choices. Recommended are e.g. asm for
distributed-grid simulations, lu for small systems or
jacobi.
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Poisson Solver Options

* In case of an iterative linear solver, this is the maximum
number of iterations to solve the linear system.
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Poisson Solver Options

« Maximum number of Newton iterations (default: 100).

e INot sure what the difference to the previous option is.

e Maximum number of Newton right-hand-side evaluations

(default: 1000).

* IRelative residual tolerance of the Newton solver (default:

le-6).

UNIVERSITY



Poisson Solver Options

* Absolute step tolerance of the Newton solver (default: 1le-
10).

. Relative step tolerance of the Newton solver (default: le-

10).
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Poisson Solver Options

* More options in the manual...
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Schroedinger Solver Options

ff eigensolver options

JJ/ e s s EE =

eigen values soluer = Krylovschur
max_number_iterations = BO00
convergence limit = 1¢-9
monitor convergence = true
preconditioner = mumps

ncv = J2

shift = 1.18
solver_transformation_type = sinvert

eps orthoq refinement = Never

UNIVERSITY



Schroedinger Solver Options

// number of eigenvalues
// =emmssmmss e ———

/f =====s=s=s=ssssssssssssssssssas
tb_basis = sp3dSsstar_S0

job_list = (passivate_H,calculate band_structure)
output = {energies,eigenfunctions_Point3D,eigenfunctions_Silo)

potential solver = poisson

k space basis = cartesian
k _points = [(8,8,8)]
number_of_nodes = (1)

UNIVERSITY



Schroedinger Solver Options

« sp3sstar, sp3sstar_S0, sp3dbsstar, sp3dosstar_S0O

« A list that deterimes what is done. Choose from assemble_H,
passivate_H, include_strain H, include_shear_strain_ H,
calculate_band_structure, electron_density,
derivative_electron density_over_potential,
hole_density, derivative_hole_density_over_potential,

spin, DOS. assemble H is activated by any other option
automatically.

UNIVERSITY



Schroedinger Solver Options

« Which eigenvalue solver to use. Setting lapack always com-
putes all eigenvalues and is feasible only for very small sys-
tems. Recommended choices are krylovschur and arpack.
Other choices are arnoldi, jd, gd.
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Schroedinger Solver Options

« Which eigenvalue solver to use. Setting lapack always com-
putes all eigenvalues and is feasible only for very small sys-
tems. Recommended choices are krylovschur and arpack.
Other choices are arnoldi, jd, gd.

Lanczos Solver
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Schroedinger Solver Options

. Choose from Hamiltonian, energies, k-points, DOS,
electron density, electron_density_VTK, hole density,

hole_density_VTK, lon_density, eigenfunctions,
eligenfunctions_kO, eigenfunctions_VTK,
eigenfunctions_VTK kO, eigenfunctions_Silo,

eigenfunctions_Silo_kO, spin.

« Accuracy of saved eigenvalues within output file.

UNIVERSITY



Schroedinger Solver Options

o The (optional) name of the simulation object where the elec-
trostatic potential is drawn from.

., Only relevant for calculate_band structure. This parame-
ter is a list of points in k-space along which the band structure

is calculated.

, This list gives the uniform discretization of each segment set
by the k_points parameter (note that specifying N points
means N — 1 segments). For density calculations, setting this
parameter to 0 leads to computation of £ = 0 only and appli-
cation of an analytical formula that assumes parabolic sub-

bands.

UNIVERSITY



Schroedinger Solver Options

o Linear solver employed in the shift-and-invert operation. This
should be preferable a direct linear solver since the LU fac-

torization can be reused during the Krylov iterations.

, (default: 1u) Preconditioner employed in the shift-and-invert

operation.

, Eigensolver shift. Not sure when this is relevant, but only in

few cases.

e« When set to true, terminal output related to the Krylov it-
eration is generated.

UNIVERSITY



Schroedinger Solver Options

* More options in the manual...
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Transport
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Transport
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Transport

* Non-equilibrium Green functions (NEGF) formalism is a very \
powerful way for the simulation of charge transport from a
guantum perspective. It easily includes:
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Transport

* Non-equilibrium Green functions (NEGF) formalism is a very \
powerful way for the simulation of charge transport from a
guantum perspective. It easily includes:

Fully quantum transport (not just quantum corrections)

UNIVERSITY



Example: RTDNEGF

| £ nanoHUB -’ - - R A — ey Sa— [
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Starting Bias: ] 0v
Ending Bias:[4F-]0.5v
Na. af paints: [F-]21

Fotential MDdeI:IThomas—Fermi

[ /I B Y

Cluantum charge: quf

Lattice Constant: 0.2833nm

Contact B1 W BZ Contact u
a0nm a0nm

=30
£
=
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5
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PURDUE
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Transport

« Semiclassical density calculations *Continuum
Effective mass
n=Ng F1/2(77F )

€ *Parabolic band

T— Fermi-Dirac Integral
(@)

C;

10"
2
—~10
=
3 0
) . {10
I Poisson Equatlonl 3
Current Em
u 50 Spectrum E »
(b U10
5 6 60mV/dec
Ifaster NEGF caIcuIations!l ~1 .o
0 10 20 30 40 50 60 00 0.1 0.2 03 04
Position(nm) Vg(V)

RRRRR [17] Z. Jiang, et al., “Quantum Transport in GaSb/InAs nanowire TFET with semiclassical charge density”, Poster at IWCE 2%
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Semi-classical Solver Options

potential solver = my potential solver

fermilevel solver = my density solver

equilibrium contacts = (source contact, drain_contact, gate)
equilibrium regions = [{1, 6), (2), (3, &4, 5)]

Ef approximation = average
fermilevel = 0.8
temperature = 388

UNIVERSITY



Semi-classical Solver Options

. 1he name of the simulation where the electrostatic potential
is computed.

. (default: false) This boolean determines whether a selfconsis-
tent iteration with the potential solver is done.

, Atom-based output to be generated in the end. Can be
transmission, potential, free_charge, free_charge_cm-3,

current, electron_energy (average electron energy
[ dE En(z,E)
[ dE n(z,E)

) and hole_energy.
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Semi-classical Solver Options

* More options in the manual...
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Example and Exercises

Example and Exercises
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Example and Exercises

 Let us see a simple example:

calculate the wavefunctions of a very small quantum well
GaAs-InAs-GaAs with strain and applied potential.
1.424 eV 1.424 eV

0.354 eV

GaAs InAs GaAs

UNIVERSITY



Example and Exercises

K The solver needed for this exercise will be:

1) Strain solver

y
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Example and Exercises

e Www.nanohub.org
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Example and Exercises

My Tools

Recent Favorites All Tools

Palycrystalline Growth and Coarsening i

Virtual Kinetics of Matenals Laboratory e

Spinodal Decomposition

Virtual Kinetics of Matenals Laboratory £

Dendritic Growth

Virtual Kinetics of Matenals Laboratory 3

Spinodal Decomposition 30

Workspace e

P \ =+ =l

APS Thickness Solver Lapp ==

Add a tool to your favorites by clicking a heart. Click the

heart again to remove it
PURDUE -5
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Example and Exercises

lierBnanoHUE ;%
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Run the simulation

 The command is (in a shell)

> submit -v coates -I ./all.mat nemo-r/7962
Sellier_ summer_school example.in

UNIVERSITY



Visualization: Vislt

- Global
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Visualization: Vislt

,El Host IDcthosﬂ |
1 Path |/home/nanohubysellier/summer school 2012 |
Filter |*

¥ Use "current working directory" by default | File grouping ISmart *l I Remove paths . ..

Directories Files

. (current directory) Sellier summer school example.in
.. {go up 1 directory level) all.mat

2 results how to submit.txt

Open file as type: |Guess from file name/extension j Set default open Dptinns...l

Refreshl OK | Cancell
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Visualization: Vislt
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* Histogram 4 e
- & Label 4

B Mesh ars o

operators » |

, MultiCurve &l pofential Vv j
— I Parallel Coordinates »
[0 Poincare >

- = Pseudocolor » I

&7 Scatter 4 u > | > |
7 Spreadsheet 4

< Streamline 4 5 . T ‘
¥ Subset >

«" Tensor ¥

i Truecolor * e window € all windows

+ Vector > s

# Volume 4

e all plots
PURDUE — <
UNIVERSITY Unpost DISH‘IISSI g




Visualization: Vislt

- Global
Active window |1 -l [ ™ Auto apply
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Open Close Reopen
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~Time
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Visualization: Potential

FoBRlo-0 = = 8 & k|6 & & d

sE& A ks N @@l

DB: poisson.vtk
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Visualization: Wavefunctions

W SIEIE]
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DB: wavefunction_0.3D
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THANKS!
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