

Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Using NEMO5 to quantitatively predict topological insulator behaviour

Parijat Sengupta, Tillmann Kubis, Michael Povolotskyi, Jean Michel Sellier, Jim Fonseca,

Gerhard Klimeck

Network for Computational Nanotechnology (NCN)
Electrical and Computer Engineering
Purdue University, West Lafayette IN, USA

Summer School 2012

Some commonly known facts

A dispersion cartoon

An insulator such as SiO₂, Si₃ N₄ with large band-gap

- Conduction and Valence bands describe electrons and holes
- The band gap is zero in a metal
- Some materials possess the dual properties of metals and insulators
- We will use NEMO5 to investigate some of these unique materials

What are these materials?

Dispersion obtained through ARPES*

sp³d⁵s* tight binding calculation

ε 🔭

- Primary examples are Bi₂Te₃, Bi₂Se₃, Bi_xSb_{1-x} etc...
- They are known as topological insulators
- These materials contain bound surface states

Setting up the simulation task

sp³d⁵s* tight binding calculation

- We will use a sp³d⁵s* tight binding model
- Bi₂Te₃ is our topological insulator material
- A 9 nm (appx) long quantum well will be the target device
- This will produce a band structure as shown on left

Key feature of this dispersion is a graphene-like linear character (Dirac cone)

Linearity is not due to same reason as in graphene!

Details of the simulation structure

9 nm wide c-axis oriented Bi₂Te₃ thin film

The NEMO5 input deck skeleton

There are 3 blocks in the input deck:

The NEMO5 input deck: The first block "Structure"

```
Structure
       Material
                             Domain
                                                       Geometry
         name = XYZ
                               name = device
       Material
                             Domain
         name = ABC
                               name = contact1
                                Domains for
                                                    Description of the
        Materials
                                simulations
                                                        geometry
```


Setting the input deck...

```
Structure
 Material
  name = Bi2Te3
  tag = shell
   crystal structure
                       Bi2Te3
  atom at zero = Bi
   regions =
```

- Every input deck begins with the **Structure** group
- Each region is identified by a name known as the tag
- The underlying crystal structure of the material needs to be provided
- Each simulation can have multiple *regions*, NEMO5 needs the exact number of those for correct execution
- The surface atoms can be controlled by asking NEMO5 to place a specific atom when constructing the first unit cell

Defining parameters and the domain

```
Bands:TB:sp3d5sstar_SO:param_Lee_von_Allmen:V_S_S_Sigma_Bi_H = -10
```

 Any parameter defined in the input deck takes precedence over the corresponding database entry

```
Domain
{
   name = device

   type = pseudomorphic

   base_material = shell

   dimension = (3,1,1)

   starting_cell_coordinate = (0, 0, 0)

   periodic = (false, true, true)
```

- Dimension creates a canvas of unit cells
- Periodicity set as false refers to a confined axis
 → k is not a good quantum number
- Passivate options allows inclusion of Hydrogen atoms

regions = (1)

Crystal orientation in NEMO5

```
// miller_index_basis = primitive
    crystal_direction1 = ( 0,  0,  1)
    crystal_direction2 = ( 1,  0,  0)
    crystal_direction3 = ( 0,  1,  0)

space_orientation_dir1 = (0.0, 0.0, 1.0)

space_orientation_dir2 = (1.0, 0.0, 0.0)

periodic = (false, true, true)
```

space_orientation_dir1 is the z-axis and is confined: the first entry of *periodic* option

- Crystal directions set up the coordinate system within the crystal using the basis vectors
- The basis vectors are aligned to the Cartesian axes through the space orientation option
- In this example: crystal_direction1 = (0,0,1) is aligned along space_orientation_dir1 = (0,0,1) or the z-axis.
- You need to specify only 2 directions. N5 computes the third using the crystal structure info.

"crystal_direction" & "space_orientation": A closer look

Three vectors in the device_coupling.dat file

1.
$$a = [0 \ 0 \ 3.0487]$$

2.
$$b = [0.4383 \ 0 \ 0]$$

3.
$$c = \begin{bmatrix} -0.2191 & 0.3796 & 0 \end{bmatrix}$$

- What NEMO5 internally produces?
- It produces three basis vectors
- These basis vectors can be obtained by examining the first three lines of the device_coupling.dat file
- To obtain this file, include
 output = (xyz, coupling) in
 the Domain section. You will
 see an example of it in your
 first exercise

How do you check that these vectors make sense?

Reconciling results to known crystal geometry

Our test case here is Bi₂Te₃ which has a hexagonal base

- Each edge of hexagon is 0.4383 nm
- Two hexagons are displaced along z-axis by 3.0487 nm

Three vectors in the **device_coupling.dat** file

1.
$$\mathbf{a} = [0 \ 0 \ 3.0487]$$

2.
$$\mathbf{b} = [0.4383 \ 0 \ 0]$$

3.
$$\mathbf{c} = \begin{bmatrix} -0.2191 & 0.3796 & 0 \end{bmatrix}$$

Check:

- ✓ Norm of vectors **b** and **c** is equal to 0.4383 nm
- ✓ Norm of vector a is equal to 3.0487 nm
- ✓ Angle between **b** and **c** is 120⁰ as expected

- Hexagonal base of Bi₂Te₃ quintuple layer
- The vectors **b** and **c** have an 120 degree
 angle between them

The actual geometry in numbers

```
Geometry
   Region
    shape = cuboid
    region number = 1
   priority = 1
   min = (-100, -100, 0)
   \max = (100, 100, 10)
```

- Shape options allows you to input a geometric shape for your device
- Setting the *priority* gives you control over structure creation when dealing with composite geometric shapes.
- Higher priority gets constructed first
- Actual device size is specified through min & max

The NEMO5 input deck skeleton

There are 3 blocks in the input deck:

Executing the input deck: The solvers!

- Each solver has a name
- The first solver (usually) is the geometry constructor
- The atomic coordinate positions are dumped out in a structure file
- The structure file can have several formats such as vtk, silo, xyz, pdb...

Electronic structure calculation options - I

```
solver
{
    name = BiTe bands
    type = Schroedinger
    domain = device

    active_regions = (1)

    job_list = (calculate_band_structure, assemble_H, spin)

    output = (energies, k-points, spin, eigenfunctions_VTK, orbital_resolved)

    orbital_resolved = true
```

- Electronic structure calculation must set the type to Schroedinger
- job_list shows what actions N5 must perform
- Setting orbital_resolved to true shows the contribution of each orbital to overall band structure

Electronic structure calculation options - II

$$k \text{ points} = [(0, -0.25), (0.0, 0.25)]$$

- tb_basis option lets you choose the band structure calculation model.
- tb_basis can also be set to effective mass (em)
- k_space_basis can also be set to Cartesian
- Number of nodes

 Number of k-points in the chosen k interval

The NEMO5 input deck skeleton

There are 3 blocks in the input deck:

Putting it all together...

```
Global
{
    solve = (sim_output, BiTe_bands)

    database = ../../../materials/all.mat
    messaging_level = 5
}
```

- The global section has the command solve: All job names are included under solve
- database is custom built for N5 and contains all material parameters
- messaging level indicates code progress output on screen. Level 5 is verbose

Exercise -I

- Log in to your workspace account and create a folder TI in your home directory. Navigate to the TI folder
 - mkdir TI
 - cd TI
- Pull the necessary files in your TI folder by typing the following :

```
cp ../public_examples/NCN_summer_school_2012/
Topological_Insulators_psengupta/ex*.in .
```

```
cp ../public_examples/NCN_summer_school_2012/
Topological_Insulators_psengupta/spin_analysis_ex*.m .
```

- ex1.in is the input file to calculate the dispersion relationship for a 9.0 (appx) long Bi₂Te₃ quantum well
- Submit a job by typing the command :
 submit -v ncn-hub@coates -i ../all.mat -n 16 -N 8 nemo-r8028 ./ex1.in

What do you expect to see as a solution?

Band structure for a 9.0 nm long Bi₂Te₃ quantum well

To run Matlab: \$ use matlab-7.12 \$ matlab

- NEMO5 will produce four files (SS12_TI_ex1_*.dat)
- Start MATLAB on your workspace
- Your folder has a MATLAB file called spin_analysis_ex1.m
- Execute the MATLAB script by typing spin_analysis_ex1 at the command prompt
- You will have the figure on your left!

Exercise -I contd...

Pre-computed results are stored in folder /public_examples/NCN_summer_school_2012/Topological_Insulators_psengupta

- Supplementary exercise:
- Change line 20 of the spin_analysis_ex1.m file from the preset
 - $n = [1 \ 0 \ 0]$ to $n = [0 \ 0 \ 1]$ and $n = [0 \ 1 \ 0]$
 - Run Matlab
- The three different spin-polarized plots that you obtain highlight a fundamental theory of TIs

Inter-linking solvers in NEMO5

Several solvers defined in the Solver block can be inter-linked:

NEMO5 is a toolbox....

Solvers can also speak to one another

e.g. A self-consistent charge calculation

Setting up the Poisson...

```
solver
{
  name = my_poisson

  type = NonlinearPoisson

  domain = continuum

  ksp_type = gmres
  pc_type = ilu
```

- A name is assigned to the Poisson solver (similar to previous slides)
- A non-linear Poisson will be solved
- A continuum domain is constructed
- Linear solver settings
- Electrostatic output option


```
atomistic_output = (potential, charge)
one_dim_output = (potential, charge)
one_dim_output_average = false
```


Linking Poisson to Schroedinger...

```
charge model = electron core
rel tolerance = 1e-6
max nonlinear step = 500
density solver = BiTe density
                                          desired solver
solver
                                          quantities
         = BiTe density
  name
         = Schroedinger
  type
  domain = device
                                          is computed
```

- Specific model applicable to topological insulators
- Convergence criterion
- The simple linking step done through inserting name of
- job_list tells NEMO5 to compute specific physical
- For a self-consistent calculation *electron density*

```
job list = (electron density, derivative electron density over potential)
         = (electron density VTK)
output
```


A few options in the density solver

```
charge_model = electron_core
tb_basis = sp3d5sstar_S0
number_of_eigenvalues = 100
```

```
k_space_basis = reciprocal
threshold_energy = -20
```

```
chem_pot = 0.0
number_of_k_points = 30
potential_solver = my_poisson
```


Inter-linking solvers : *my_poisson* and *BiTe_density*

- First two blocks of input statements are identical to normal eigen value calculations done earlier
- threshold_energy lets you choose eigen states beginning with energy as set in the option
- chem_pot is the Fermi level to start calculations
- Schrodinger receives the potential from the my_poisson potential solver

More advanced calculations can use boundary condition options

Implementing boundary conditions

```
boundary_condition
{
    type = NormalField

    type = ElectrostaticContact

    boundary_regions = (1)
    potential = 0.0

    E_field = 7.2e+07
}
```

- Boundary conditions can be of two forms in NEMO5.
- 1) Dirchlet (potential (ϕ) = constant)
- 2) Neumann ($\partial \Phi$ = constant)
- The input deck statements shown on left can be included multiple times at all possible external boundaries
- The right boundary region number must be specified
- E_field allows to apply an electric field of certain magnitude to device structure. It is in units of V/cm

Updating Schrödinger for eigen states calculation

$$k_{points} = [(0, -0.25), (0.0, 0.25)]$$

potential_solver = my_poisson

- Exactly same format as in Exercise 1
- Potential solver is added which supplies potential to the tight - binding Hamiltonian

Exercise -II

- ex2.in is the input file to calculate charge self-consistent dispersion relationship for a 9.0 (appx) long Bi₂Te₃ quantum well
- This task will produce a dispersion relationship, potential landscape, and the charge profile in the device
- Submit the job by typing the command : submit -v ncn-hub@coates -i ../all.mat -n 16 -N 8 nemo-r8028 ./ex2.in

What do you expect to see as a solution?

Self-consistent band structure for a 9.0 nm long Bi₂Te₃ quantum well

- NEMO5 will produce four .dat files (SS12_TI_ex2_*.dat) and a .xy file (poisson_ex2.xy)
- Start MATLAB on your workspace
- Your folder has a MATLAB file called spin_analysis_ex2.m
- Execute the MATLAB script by typing spin_analysis_ex2 at the command prompt
- You will have the figure on your left!

Electrostatic calculations

- Use the poisson_ex2.xy file (three column file) in your folder to plot the charge and potential profile
- Start MATLAB on your workspace
- Type the following for the charge & potential plot :

```
cp = load('poisson_ex2.xy');
% potential plot
figure(1)
plot(cp(:,1), cp(:,2))
% charge plot
figure(2)
plot(cp(:,1), cp(:,3))
```

You can also use any plotting software:
Please remember: Column 1 is device coordinate followed
by potential and charge data on columns 2 and 3

How do the results from Exercise I and II look like?

Self-consistent electronic structure

Schrödinger 20 band tight binding

Poisson calculation has large impact:

- Energy separation between Dirac cones gets enhanced
- Fermi velocity of Dirac states changes (mobility)
- Dirac points move below the Fermi level, into the bulk DOS

Self-consistent electrostatic calculations

Bi terminated surf.

Te terminated surf.

- Smooth perturbative potential
- Oscillations in the potential between anion/cation covered by bulk parameters
- Change of charge polarity at two surfaces due to different atomic termination

Conclusion

- Band structure calculations
 - Can handle the newest materials like topological insulators
- Charge self-consistent band structure calculation
 - For accurate device prediction
- Use of solvers to accomplish modular tasks
 - As many solvers as needed can be added
- Solvers can be inter-linked
 - Simple process accomplished by *inserting appropriate solver name*

