NEMO5 Tutorial: Graphene Nanostructures

NCN Summer School 2012
Junzhe Geng, NEMO5 team
Advantages:
• High intrinsic mobility (Over 15,000 cm²/V-s)
• High electron velocity \Rightarrow Good transport
• 2D material \Rightarrow Good scalability

• Tutorial Outline:

 » Tight binding surface treatment in NEMO5

 » Graphene models, lattice, setup in nemo5

 » Example 1: Graphene bandstructure, band model comparison

 » Example 2: Armchair graphene nanoribbon

 » Exercise: Zig-zag graphene nanoribbon

 » Example 3: Graphene nanomesh with a circular hole

 » Exercise: Graphene nanomesh with a rectangular hole
Surface Treatment
In NEMO5
Example: Si_UTB_10uc_no_pass.in

Input deck: Bandstructure calculation of a Si UTB with default settings, no passivation used.
Example: Si_UTB_10uc_no_pass.in

UTB Bandstructure:
A few states span over the band gap.

Identify the nature of band gap states:
Get the wave functions.

Calculate the wave functions at the Γ point.
Surface Passivation in NEMO5

Example: Si_UTB_10uc_no_pass.in

States in the bandgap are surface states. They are produced by dangling bonds.

Volume state

Surface state

10 unit cell

Energy (eV)

[100] k(π/a) [110]

-2 -1 0 1 2 3
Example: Si_UTB_10uc_pass.in

```
Domain {
  name = structure1
  type = pseudomorphic
  base_material = substrate
  dimension = (1,1,10)
  periodic = (true, true, false)
  crystal_direction1 = (1,0,0)
  crystal_direction2 = (0,1,0)
  crystal_direction3 = (0,0,1)
  space_orientation_dir1 = (1,0,0)
  space_orientation_dir2 = (0,1,0)
  regions = (1)
  passivate = false   //this applies to
  geometry_description = simple_shapes
}
```

“passivate = true”
Adds H-atoms at the surface
Example: Si_UTB_10uc_pass.in

Surface states are shifted out of band gap region to very high energies (~1 keV)
http://en.wikipedia.org/wiki/Graphene
Tight-binding Model

- $2p_z$, $2p_y$, and $2p_x$ orbitals
- $2p_z$ orbital is well separated in energy from the sp^2 orbitals
- More importantly, only the p_z electron is close to the Fermi level
- Therefore, the common tight-binding method for graphite/graphene considers only the p_z orbital (P.R. Wallace, PRB 1947)
NEMO5: two models for Graphene bandstructure

1) Standard model of tight binding literature “Pz”
 - Includes just one p_z orbital per atom
 - Does not allow for hydrogen passivation
 Because p_z orbital of C has zero coupling to s orbital in H

2) Recently developed model “PD” (J. Appl. Phys. 109, 104304 (2011))
 - Includes $\{p_z, d_{yz}, d_{zx}\}$ orbital set on each C atom and H atom
 - Hydrogen atoms included explicitly (realistic treatment)

“passivate_H” not required in job_list
BUT
Make H atoms “active”, i.e. include them explicitly:
Domain
{
 activate_hydrogen_atoms = true (default = false)
}
Always have passivate = true in the domain section (default)
Graphene: Primitive Basis

Lattice basis:

\[\vec{\alpha}_1 = \frac{3a_0}{2} \hat{x} + \frac{\sqrt{3}a_0}{2} \hat{y} \]

\[\vec{\alpha}_2 = \frac{3a_0}{2} \hat{x} - \frac{\sqrt{3}a_0}{2} \hat{y} \]

Reciprocal lattice basis:

\[\vec{A}_1 = \frac{2\pi}{3a_0} \hat{x} + \frac{2\pi}{\sqrt{3}a_0} \hat{y} \]

\[\vec{A}_2 = \frac{2\pi}{3a_0} \hat{x} - \frac{2\pi}{\sqrt{3}a_0} \hat{y} \]

Symmetry points:

\[K : \frac{1}{3} \vec{A}_1 - \frac{1}{3} \vec{A}_2 \]

\[M : \frac{1}{2} \vec{A}_1 \]

Given in NEMO5

User defined points
Define the material

```json
Material
{
    name = Carbon
tag = substrate
crystal_structure = graphene
regions = (1)
Bands\TB;Pz:param_set = param_default
}
```

Have “true” only for PD model

```json
Geometry
{
    Region
    {
        shape = cuboid
region_number = 1
priority = 1
min = (-5,-5,-5) // in nm
max = (5,5,5)
    }
}
```

With a large enough region, device is limited by dimension only

```json
Domain
{
    name = structure1
type = pseudomorphic
base_material = substrate
dimension = (1,1,1)
origin = (0,0,0)
activate_hydrogen_atoms = true
periodic = (true, true, false)
miller_index_basis = primitive
crystal_direction1 = (1,0,0)
crystal_direction2 = (0,1,0)
crystal_direction3 = (0,0,1)
space_orientation_dir1 = (1,0,0)
space_orientation_dir3 = (0,0,1)
regions = (1)
geometry_description = simple_shapes
FEM_mesh_creation = false
}
```

Dimension in number of unit cells

‘primitive’ or ‘Cartesian’
J.Z Geng

```python
solver
{
    name = Ek
    type = Schroedinger
    domain = structure1
    active_regions = (1)

    eigen_values_solver = krylovshur
    preconditioner = mumps
    output = (energies, k-points)
    output_precision = 7

    job_list = (calculate_band_structure)

    tb_basis = PD
    'Pz' or 'PD'

    k_space_basis = reciprocal
    number_of_eigenvalues = 20
    k_points = [(0.0, 0.0, 0.0), (0.333, -0.333), (0.5, 0.0), (0.0, 0.0, 0.0)]
    number_of_nodes = (100, 50, 40)
}
```

Symmetry points:

- $K: \frac{1}{3} A_1 - \frac{1}{3} A_2$
- $M: \frac{1}{2} A_1$

Expressed in units of A_1 and A_2
DFT results are much better reproduced with the PD model.
Graphene Nanoribbons

Graphene: Cartesian Basis

Lattice basis:
\[\vec{a}_1 = \sqrt{3} a_0 \hat{y} \]
\[\vec{a}_2 = 3 a_0 \hat{x} \]

Reciprocal lattice basis:
\[\vec{A}_1 = \frac{2\pi}{\sqrt{3}a} \hat{x} \]
\[\vec{A}_2 = \frac{2\pi}{3a} \hat{y} \]
Domain
{
 name = structure1
 type = pseudomorphic
 base_material = substrate
 dimension = (1,1,1)
 origin = (0,0,0)
 activate_hydrogen_atoms = true
 periodic = (true, true, false)
 miller_index_basis = cartesian
 crystal_direction1 = (1,0,0)
 crystal_direction2 = (0,1,0)
 crystal_direction3 = (0,0,1)
 space_orientation_dir1 = (1,0,0)
 space_orientation_dir3 = (0,0,1)
 regions = (1)
 geometry_description = simple_shapes
 FEM_mesh_creation = false
}
Example 1: 10-AGNR

10 atomic layers wide

Domain
{
 name = structure1
 type = pseudomorphic
 base_material = substrate
 dimension = (10,1,1)
 origin = (0,0,0)
 activate_hydrogen_atoms = true
 periodic = (false, true, false)
 miller_index_basis = cartesian
 crystal_direction1 = (1,0,0)
 crystal_direction2 = (0,1,0)
 crystal_direction3 = (0,0,1)
}

Geometry
{
 Region
 {
 shape = cuboid
 region_number = 1
 priority = 1
 min = (-0.0,-20,-5) // in nm
 max = (1.15,20, 5)
 tag = substrate
 }
}

“Armchair”

Periodic
Armchair edges allow opening up a bandgap
Exercise: Define a “10-ZGNR” in NEMO5 and calculate its bandstructure along x direction ([100])

\[a_0 = 0.142\text{nm}\]

The diagram illustrates a structure with labeled vectors and points labeled 1 through 10 along the y-axis and a_0=0.142nm along the x-axis. The term “zigzag” is also marked on the diagram.
Exercise 1: 10-ZGNR

Domain
{
 name = structure1
 type = pseudomorphic
 base_material = substrate
 dimension = (1, 6, 1)
 origin = (0, 0, 0)
 activate_hydrogen atoms = true
 periodic = (true, false, false)
 miller_index_basis = cartesian
 crystal_direction1 = (1, 0, 0)
 crystal_direction2 = (0, 1, 0)
 crystal_direction3 = (0, 0, 1)
}

Geometry
{
 Region
 {
 shape = cuboid
 region_number = 1
 priority = 1
 min = (-20.0, 0.35, -5)
 max = (20.0, 2.35, 5)
 tag = substrate
 }
}

solver
{
 k_points = [(-0.5), (0.5)]
 number_of_nodes = (100)
}.

"zigzag"
Zigzag edges give metallic behavior
Graphene Nanomeshes

http://today.ucla.edu/
Example 2: Graphene Nanomesh

Region 1 defines the graphene supercell

Region 2 defines a hole

Higher priority in the hole region

Only include region 1 in the domain

```
Domain
{
    name = structure1
    type = pseudomorphic
    base_material = substrate
    dimension = (12,12,1)
    origin = (0,0,0)
    activate_hydrogen_atoms = true
    periodic = (true, true, false)

    miller_index_basis = primitive
    crystal_direction1 = (1,0,0)
    crystal_direction2 = (0,1,0)
    crystal_direction3 = (0,0,1)

    space_orientation_dir1 = (1,0,0)
    space_orientation_dir3 = (0,0,1)

    regions = (1)
    geometry_description = simple_shapes
    FEM_mesh_creation = false
}
```

Geometry
{
 Region
 {
 shape = cuboid
 region_number = 1
 priority = 1
 min = (-10, -10, -5) // in
 max = (10, 10, 5)
 tag = substrate
 }

 Region
 {
 shape = cylinder
 region_number = 2
 priority = 2
 min = (1.230, 0.346, -5)
 max = (2.952, 2.068, 5)
 tag = substrate
 }
```
Flat bands in the middle of the bandgap

Need to visualize the wavefunction at the $\Gamma$ point

$E_g = 0.75$ eV
Wavefunction Visualization

```
solver
{
 name = Gamma
 type = Schroedinger
 domain = structure1
 active_regions = (1)

 eigen_values_solver = krylovschur
 preconditioner = mumps
 output = (eigenfunctions, eigenfunctions_VTK)
 output_precision = 7

 job_list = (passivate_H, calculate_band_structure)

 tb_basis = PD
 k_space_basis = reciprocal
 number_of_eigenvalues = 120
 shift = 0.1
 k_points = [(0,0,0,0)]
 number_of_nodes = 1
}

Global
{
 // solve = (visualizer, BZ, gnm)
 solve = (Gamma)
 database = /autohome/u121/jgeng/NEMO5/prototype/ma:
 messaging_level = 5
}
```

A new directory
That stores all wavefunction files
Wavefunctions on the flat band are localized at the zigzag edges.
Exercise:
• Define a graphene nanomesh of 8nm x 8nm with a rectangular hole 7nm x 1nm.
• Plot bandstructure along x and y.
• Obtain and visualize wavefunctions at Γ point.
Exercise 2: Graphene Nanomesh

Structure:

```
Domain
{
 name = structure1
 type = pseudomorphic
 base_material = substrate
 dimension = (33,19,1)
 origin = (0,0,0)
 activate_hydrogen_atoms = true
 periodic = (true, true, false)
 miller_index_basis = cartesian
}

Geometry
{
 Region
 {
 shape = cuboid
 region_number = 1
 priority = 1
 min = (-50,-50,-5)
 max = (50,50,5)
 tag = substrate
 }
 Region
 {
 shape = cuboid
 region_number = 2
 priority = 2
 min = (0.5919, 3.5, -5)
 max = (7.3785, 4.5, 5)
 tag = substrate
 }
 solver
 {
 k_points = [(0,0,5), (0,0,0), (0.5,0)]
 number_of_nodes = (80,80)
 }
```
Bandstructure and Wavefunctions

Edge state at the zigzag edges
Thank you !