

# Network for Computational Nanotechnology (NCN)

Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP

# NEMO5 Tutorial: Graphene Nanostructures

NCN Summer School 2012 Junzhe Geng, NEMO5 team







# Graphene and transistor





100GHz Graphene FET Image credit: IBM

#### **Advantages:**

- High intrinsic mobility (Over 15,000 cm<sup>2</sup>/V-s)
- High electron velocity → Good transport
- 2D material → Good scalability



Image from: University of Maryland



Frank Schwierz, Nature Nano. 5, 487 (2010)



#### Tutorial Outline:

- » Tight binding surface treatment in NEMO5
- » Graphene models, lattice, setup in nemo5
- » Example 1: Graphene bandstructure, band model comparison
- » Example 2: Armchair graphene nanoribbon
- » Exercise: Zig-zag graphene nanoribbon
- » Example 3: Graphene nanomesh with a circular hole
- » Exercise: Graphene nanomesh with a rectangular hole







# **Surface Treatment**In NEMO5





# Surface Passivation in NEMO5: example Si UTB



Inputdeck: Bandstructure calculation of a Si UTB with default settings, no passivation used





**PURDUE** J.Z Geng

### **Surface Passivation in NEMO5**

## Example: Si\_UTB\_10uc\_no\_pass.in





#### **UTB Bandstructure:**

A few states span over the band gap

# Identify the nature of band gap states: Get the wave functions

```
solver
               = Gamma
name
              = Schroedinger
type
domain
               = structure1
active regions = (1)
job list = (calculate band structure)
output
              = (eigenfunctions, eigenfunctions VTK)
output precision = 7
tb basis = sp3d5sstar
Matlaboutput = false
chem pot
shift
k space basis = reciprocal
k \text{ points} = [(0.0, 0.0)]
number of nodes = 1
```

Calculate the wave functions at the  $\Gamma$  point



**PURDUE** J.Z Geng

## **Surface Passivation in NEMO5**

# Example: Si\_UTB\_10uc\_no\_pass.in





## Surface Passivation in NEMO5







#### **Surface Passivation in NEMO5**

#### Example: Si\_UTB\_10uc\_pass.in

```
_0
        10 unit cell
      Domain
           name = structure1
           type = pseudomorphic
           base_material = substrate
           dimension = (1,1,10)
           periodic = (true, true, false)
           crystal_direction1 = (1,0,0)
           crystal_direction2 = (0,1,0)
           crystal_direction3 = (0,0,1)
           space_orientation_dir1 = (1,0,0)
           space_orientation_dir2 = (0,1,0)
           regions = (1)
           passivate= true
           geometry_description = simple_shapes
```









http://en.wikipedia.org/wiki/Graphene

# Graphene





# Tight-binding Model





Y. Zhang and R.Tsu, Nanoscale Research Letters Vol. 5 Issue 5

 p<sub>z</sub> orbital is well separated in energy from the sp<sup>2</sup> orbitals

-20

- More importantly, only the p<sub>z</sub> electron is close to the Fermi level
- Therefore, the common tight-binding method for graphite/graphene considers only the p<sub>z</sub> orbital (P.R. Wallace, PRB 1947)



# Passivation in PD and Pz tight binding model

#### **NEMO5:** two models for Graphene bandstructure

- 1) Standard model of tight binding literature "Pz"
- Includes just one p<sub>7</sub> orbital per atom
- Does not allow for hydrogen passivation
   Because p<sub>z</sub> orbital of C has zero coupling to s orbital in H



 $p_Z$ 

- 2) Recently developed model "PD" (J. Appl. Phys. **109**, 104304 (2011)
- Includes {p<sub>z</sub> d<sub>yz</sub> d<sub>zx</sub>} orbital set on each C atom and H atom
- Hydrogen atoms included explicitly (realistic treatment)

Always have passivate = true in the domain section (default)





# Graphene: Primitive Basis





Lattice basis:

$$\vec{a}_1 = \frac{3a_0}{2}\,\hat{x} + \frac{\sqrt{3}a_0}{2}\,\hat{y}$$

$$\vec{a}_2 = \frac{3a_0}{2}\,\hat{x} - \frac{\sqrt{3}a_0}{2}\,\hat{y}$$

Reciprocal lattice basis:

$$\vec{A}_{1} = \frac{2\pi}{3a_{0}} \hat{x} + \frac{2\pi}{\sqrt{3}a_{0}} \hat{y}$$

$$\vec{A}_2 = \frac{2\pi}{3a_0} \hat{x} - \frac{2\pi}{\sqrt{3}a_0} \hat{y}$$

Symmetry points:

$$K: \frac{1}{3}\vec{A}_1 - \frac{1}{3}\vec{A}_2$$

$$M: \frac{1}{2}\vec{A}_1$$

User defined points



Given in NEMO5



# **Defining the Structure**

```
Domain
Material
             Define the material
                                                                        Dimension in
                                                name = structure1
                                                type = pseudomorphic
    name = Carbon
                                                                        number of unit
                                                <u> base material = substrat</u>
    tag = substrate
                                                dimension = (1,1,1)
                                                                        cells
    crystal_structure = graphene
    regions = (1)
                                                origin = (0.0.0)
    Bands:TB:Pz:param_set = param_default
                                                activate_hydrogen_atoms = true
                          Have "true"
                                                periodic = (true, true, false)
Geometry
                          only for PD
                                                miller_index_basis = primitive
                          model
                                                crystal_direction1 = (1,0,0)
                                                                             'primitive' or
   Region
                                                crystal_direction2 = (0,1,0)
                                                crystal_direction3 = (0,0,1)
                                                                            'Cartesian'
                      = cuboid
        shape
        region_number = 1
                                                space_orientation_dir1 = (1,0,0)
        prioritu
                                                space_orientation_dir3 =
                        (-5,-5,-5) // in nm
        min
                          5. 5. 5)
        max
                                                regions = (1)
                                                geometry_description = simple_shapes
      With a large enough region,
                                                FEM mesh creation = false
      device is limited by dimension
```



only





```
0
solver
                       = Ek
     name
                                                                                   M
                        = Schroedinger
     type
     domain
                       = structure1
     active\_regions = (1)
     eigen_values_solver = krylovschur
     prec<u>onditioner =mumps</u>
                       = (energies,k-points)
     output
     output_precision = 7
                                                                           Symmetry points:
     job_list
                       = (calculate_band_structure)
                                                                           K: \frac{1}{3}\vec{A}_1 - \frac{1}{3}\vec{A}_2
    tb_basis = PD
                              'Pz' or 'PD'
     k_space_basis = reciprocal
                                                  \Gamma \rightarrow K \rightarrow M \rightarrow \Gamma
     <u>number_of_eigenvalues = 20</u>
                        = [ (0.0,0.0), (0.333,-0.333), (0.5,0), (0.0,0.0)]
     k_points
     number_of_nodes = (100,50,40)
                                                      Expressed in units of
}
                                                      A<sub>1</sub> and A<sub>2</sub>
```



# Graphene Bandstructure: P<sub>7</sub> vs. P/D



**PURDUE** J.Z Geng





Z.Chen, et al. Physica 40, 228-232 (2007)

# Graphene Nanoribbons





# **Graphene: Cartesian Basis**





Lattice basis:

$$\vec{a}_1 = \sqrt{3}a_0\,\hat{y}$$
$$\vec{a}_2 = 3a_0\hat{x}$$

$$\vec{a}_2 = 3a_0\hat{x}$$

Reciprocal lattice basis:

$$\vec{A}_1 = \frac{2\pi}{\sqrt{3}a} \hat{x}$$

$$\vec{A}_2 = \frac{2\pi}{3a} \,\hat{y}$$











```
Domain
   name = structure1
   type = pseudomorphic
   base_material = substrate
   dimension = (1,1,1)
   origin = (0,0,0)
   activate_hydrogen_atoms = true
   periodic = (true, true, false)
                          cartesian
   miller_index_basis =
   crystal_direction1 = (1,0,0)
   crystal_direction2 = (0,1,0)
   crystal_direction3 = (0.0.1)
   space_orientation_dir1 = (1,0,0)
   space_orientation_dir3 = (0,0,1)
   regions = (1)
   geometry_description = simple_shapes
   FEM_mesh_creation = false
```



# Example 1: 10-AGNR











Armchair edges allow opening up a bandgap





















### Exercise1: 10-ZGNR



```
Domain
{
    name = structure1
    type = pseudomorphic
    base material = substrate
    dimension = (1,6,1)

    origin = (0,0,0)
    activate_hydrogen_atoms = true // gra

    periodic = (true, false, false)

    miller_index_basis = cartesian
    crystal_direction1 = (1,0,0)
    crystal_direction2 = (0,1,0)
    crystal_direction3 = (0,0,1)
```

Geometry

```
solver
{
    k_points = [ (-0.5) , (0.5)]
    number_of_nodes = (100)
}
```





Zigzag edges give metallic behavior







http://today.ucla.edu/



# **Graphene Nanomeshes**





# Example 2: Graphene Nanomesh













#### Wavefunction Visualization

```
solver
                   = Gamma
    name
                   = Schroedinger
    type
    domain
                   = structure1
    active\_regions = (1)
    eigen_values_solver
                          = krylovschur
    preconditioner
                    = MUMDS
                   = (eigenfunctions, eigenfunctions_VTK)
    output
    output_precision = /
    .job_list
                   = (passivate_H, calculate_band_structure)
    tb_basis = PD
    k_space_basis
                    = reciprocal
    number_of_eigenvalues = 120
    shift = 0.1
                    = [(0.0,0.0)]
    k_points
    number_of_nodes = 1
}
Global
             <u>= (visualize</u>r, BZ, gnm)
   solve
             = (Gamma)
    solve
    database = /autohome/u121/jgeng/NEMO5/prototype/ma
    messaging_level = 5
}
```

```
[jgeng@rossmann-fe02 AL_12_5]$ ls
               BZ points.txt gnm.err
BZ.vtk
                                       gnm.out
              eigenfunctions
BZ_facets.txt
                              gnm.in
                                       gnm.silo
                                                gn
                     A new directory
                      That stores all
                      wavefunction files
Oaliilia_t±3.∀CK
               Odinina_TUZ.√UN
Gamma_f2.dat
               Gamma_f33.dat
Gamma_f2.vtk
               Gamma_f33.vtk
Gamma_f20.dat
               Gamma_f34.dat
Gamma_f20.vtk
               Gamma_f34.vtk
Gamma_f21.dat
              Gamma_f35.dat
Gamma_f21.vtk
               Gamma_f35.vtk
Gamma_f22.dat
               Gamma_f36.dat
Gamma f22.utk Gamma f36.utk
```





# **GNM:** Edge state



Wavefunctions on the flat band are localized at the zigzag edges





# Exercise 2: Graphene Nanomesh



#### **Exercise:**

- Define a graphene nanomesh of 8nm x 8nm with rectangular hole 7nm x 1nm.
- Plot bandstructure along x and y.
- Obtain and visulize wavefunctions at Γ point









# Exercise 2: Graphene Nanomesh

Domain



```
19
20
            name = structure1
21
            type = pseudomorphic
22
            <u>hase material = substrate</u>
23
            dimension = (33,19,1)
24
25
            origin = (0,0,0)
26
            activate_hydrogen_atoms = true
27
            periodic = (true, true, false)
28
29
            miller_index_basis = cartesian
42
       Geometry
43
44
            Region
45
46
                shape
                                = cuboid
47
                region_number = 1
48
                prioritu
                                  (-50, -50, -5)
49
                min
                                    50, 50, 5)
50.
                max
                tag = substrate
52
53
            Region
54
55
                                = cuboid
                shape
56
                region_number = 2
57
                <u>prioritu</u>
58
                min = (0.5919, 3.5, -5)
59
                \max = (7.3785, 4.5, 5)
60
                tag = substrate
61
```

```
solver
{
    k_points = [(0,0,5), (0,0,0,0) , (0,5,0)]
    number_of_nodes = (80,80)
}
```



# **Bandstructure and Wavefunctions**







# Thank you!



