

Network for Computational Nanotechnology (NCN)

UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP

Tutorial 5B Strain

Hesameddin Ilatikhameneh
Yuling Hsueh, Jean Michel Sellier
Jim Fonseca, Tillmann Kubis
Michael Povolotskyi
Prof. Gerhard Klimeck

Strain solver

Objective: Find relaxed positions of atoms

Example: Quantum dot (10M Atoms, 100s CPUs, hours)

Initial positions Displacement magnitude Strain Solver 60nm (a) Cap layer GaAs ("30" nm) InxGa1-xAs lnAs 5nm [001] 20nm 60nm GaAs Substrate ("30" nm) [100]

Strain solver

Let's run the input-deck (it will take several minutes)

cd ~
cd public_examples/NCN_summer_school_2012/Quantum_Dot_Hesam
!ln
Don't Forget

Don't Forget Exclamation Sign!

ln -s /apps/share64/nemo/examples/current/materials/all.mat

submit -v ncn-hub@coates -i ./all.mat -n 8 nemo-r8028 a_QD_10nm_Usman.in

Why do we need relaxed positions?

Strain Examples:

- 1. Quantum Dot with Open Boundaries
 - \Rightarrow Input deck \Leftrightarrow Flow chart
- 2. Quantum Dot with all types of boundary conditions
 - » How to apply different boundary conditions
- 3. Quantum well

Strain Simulation

"Stand up to a Computer"

S. Fergusson, Eng. In Mind's Eye, MIT Press

Understand how simulation software works

Flow chart of Strain Simulation

How to obtain the Atoms positions and Strain?

Geometry Definition for Strain

Example1: Quantum Dot with Open Boundary
Input deck ← Flow chart

Flow chart of Strain Simulation

1st **Step:** How to setup initial positions in input-deck?

Initial positions of Atoms

```
Structure
        Material
                                    = GaAs
                 name
                                    = substrate
                 tag
                 crystal_structure = zincblende
                 regions
                                    = (1)
        Material
                                    = InAs
                 name
                                    = dot
                 tag
                 crystal_structure = zincblende
                 regions
                                   = (2)
```

1-a) Materials

- ➤ GaAs and InAs
- ➤ We can change material properties here
- ➤ The regions will be determined in Geometry

Initial positions of Atoms

```
Geometry
                     //--- GaAs Substrate ---\\
      Region
             shape
                          = cuboid
              region_number = 1
             priority = 1
                     = (-0.1, -0.1, -0.1)
             min
                          = (3.5, 3.5, 3.5)
             max
                                          ---\\
                     //--- InAs Dot
      Region
                          = cuboid
             shape
             region_number = 2
             priority
             min
                 = (1.13, 1.13, 1.13)
                          = (2.26, 2.26, 2.26)
             max
```

1-b) Geometry

- > dimensions are in nm
- ➤ The region numbers are what we specified in material section

Initial positions of Atoms

```
Domain.
                     = atomic structure
       name
                     = pseudomorphic
        type
       base material = substrate
       dimension = (6,6,6)
                      = (false,false,false)
       periodic
        crystal direction1 = (1,0,0)
        crystal direction2 = (0,1,0)
        crystal direction3 = (0,0,1)
        space orientation dir1 = (1, 0, 0)
        space_orientation_dir2 = (0, 1, 0)
       passivate = false
        origin = (0,0,0)
        output = (xyz,coupling)
       regions = (1,2)
```

1-c) Domain

- ➤ Base material is very important in Strain simulation
- ➤ It determines the building block of the structure and initial positions of atoms
- ➤ The boundary condition will be applied to these initial positions

Strain Solver Parameters

Base Material:

Initially GaAs and InAs have same lattice constant

Flow chart of Strain Simulation

2nd Step: How to setup Strain solver in input-deck?

Strain Solver Parameters

2) Strain Solver

- > type determines the solver.
 For strain solver type should be "KeatingStrain" or "VFFStrain".
- models determine the interatomic potential function

Standard Keating: harmonic Lazarenkova :anharmonic_Areshkin Modified VFF: cross-stretch, stretch-bend, ...

Strain Solver Parameters

Flow chart of Strain Simulation

3rd **Step:** Convergence criteria and outputs in input-deck

Strain Solver Parameters

```
solver
  Outputs
  calculate piezo
                             = true
  calculate epsilon
                             = true
                             = Graphic Output.silo
  silo file
  xyz file
                             = Text Output.xyz
                             = Text_Output_Strain.xy
  xy file
  calculate bond stats
                             = Bond Lengths.bonds
// Petsc options
    linsolver max iters
                               = 30000
    linear_solver
                               = bcgsl
    preconditioner
                               = jacobi
    max num iters
                               = 20000
    absolute tol
                               = 1e-8
    relative tol
                               = 1e-8
    linsolver monitor
                               = true
```

2) Strain Solver

- calculate_epsilon
 Enables the strain calculation
- ➤ absolute_tol and relative_tol determine the convergence condition
- > There are different matrix solvers and preconditioners which affect convergence speed

Strain Outputs

• Graphic Output (Displacement, Strain)

Exercise: Strain and displacement in Quantum dot

Goal: How to run solver and plot the displacement/strain

Geometry Definition for Strain

- 2. Quantum Dot with all types of boundary conditions
 - » How to apply different boundary conditions

Periodic Boundary Condition

How to make periodic boundary condition?

```
Domain
       name = atomic structure
       type = pseudomorphic
       base material = substrate
       dimension
                  = (6, 6, 6)
       periodic
                     = (true, true, false) // <---- Periodic in x and y directions
       crystal direction1 = (1,0,0)
       crystal direction2 = (0,1,0)
       crystal direction3 = (0,0,1)
       space orientation dir1 = (1, 0, 0)
       space orientation dir2 = (0, 1, 0)
       passivate = false
       origin = (0,0,0)
       output = (xyz,coupling)
       regions = (1,2)
```


Fixed boundary condition

How to make fixed boundary condition?

To fix a boundary

- ➤ Change in Geometery
 Introduce the boundary region
- ➤ Change in strain solver Choose the boundary in fixed_boundary = (1,5,6)

All atoms in this volume will be fixed

Fixed boundary condition

How to make fixed boundary condition?

To fix a boundary

- ➤ Change in Geometery
 Introduce the boundary region
- ➤ Change in strain solver Choose the boundary in fixed_boundary = (1,5,6)

• Displacement output

• Example3: Quantum well

Setting the Geometry

```
Geometry
               //--- GaAs Substrate ---\\
      Region
            shape
                  = cuboid
            region number = 1
            priority = 1
            min = (-0.1, -0.1, -0.1) // Units: nm
            max = (4.0, 5.7, 4.0) // Units: nm
              //--- InAs Well ---\\
      Region
            shape = cuboid
            region number = 2
            priority = 2
            min = (-0.1, 1.6, -0.1)
            \max = (4.0, 3.8, 4.0)
               //--- Left Fixed Boundary
      Boundary region
            shape
                      = cuboid
            region number = 1
            priority = 1
            min = (0,0,0)
                    = (4.0, 0.2, 4.0)
            max
```

```
Periodic

Close InAs Open

GaAs
```


Strain outputs

Outputs

• Displacement

• Strain eyy

Thanks

