

Importance of Heat

U.S. Energy Flow Trends – 2002 Net Primary Resource Consumption ~97 Quads

**Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind.

http://eed.lini.gov/flow

Nano for Energy

- Increased surface area
- Interface and size effects

Nanoengineering Group

Nanostructured Thermoelectric Materials, Thermoelectric Power Generators and Refrigerators

Photon Control, Thermal and Solar Photovoltaics, Solar Thermal

High Thermal Conductivity Polymers

NanoEngineering Group

High Thermal Conductivity Liquids, Desalination____

Thermoelectric Energy Conversion: Transport, Materials, and Systems

Gang Chen

Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge, MA 02139

Email: gchen2@mit.edu http://web.mit.edu/nanoengineering

Hawkins Memmorial Lecture, 2012 School of Mechanical Engineering Purdue University

Outline

- Thermoelectrics and materials
- Phonon and electron engineering
- Solar thermoelectric energy conversion

Thermoelectric Energy Conversion

HOT SIDE

Nondimensional Figure of Merit

Device Efficiency

Heat Source Temperature (100K)

Zebarjadi et al., Energy & Env. Sci., 5, 5147, 2012.

Contra Properties

Wiedemann-Franz Law

 $\frac{k_e}{\sigma T} = L(n)$

Lorenz Number:

In Metal: L =2.44 x 10-8 W Ω^{-1} K⁻² In semiconductor: depends on n

ZT Dilemma

Phonon Engineering

Methods of Reducing k_p In Bulk Materials:

• Alloy, 1950s (Ioffe)

• Rattlers, 1990 (Slack)

Triple Filled n-type Skutterudites

Triangles: the literature data.

NanoEngineering Group

From Z.F. Ren

TECHNOLOGY

Nanostructured Thermoelectric Materials

Half-Heuslers

INSTITUTE OF TECHNOLOGY

Recent Progress in ZT

Zebarjadi et al., Energy & Env. Sci., 5, 5147, 2012

Phonon Engineering

First-Principles Simulation

Phonon Mean Free Path in Si at 300 K

INS TEC

Results from First-Principles Simulation

Esfarjani et al., Phys. Rev. B 84, 085204 (2011). Shiomi et al., Phys. Rev. B 84, 104302 (2011). Takuma et al., Phys. Rev. B 85, 155203 (2012). Tian et al., Phys. Rev. B 85, 184303 (2012). Zebarjadi et al., Energy & Env. Sci, 5, 5047 (2012)

Thermal Conductivity Spectroscopy

ngineering Group

Experimental Results on Si

Ballistic heat flux is less than Fourier law prediction

Chen, J. Heat Transfer, 118, 539, 1996

Physics: Measuring how far vibrations travel

ef.

August 25, 2011

pumps

Thermal Conductivity Spectroscopy on Phonon MFP Distribution

Minnich et al., PRL, 107, 095901, 2011

Johnson et al., submitted

ngineering Group

Pushing Down to Nanometer

Electron Transport

Electron Engineering

=

TECHNOLOGY

Modulation Doping

2D Thin-Films

3D Bulk Nanostructures

Schaffler, Semicond. Sci. Tech. 12 1997 Zebarjadi et al., Nano Letters, 11, 2225, 2011.

Concurrent Electron and Phonon Engineering

Yu et al., Nano Letters, 12, 2077 (2012).

HUSETTS

en.wikipedia.org

Invisible Cloak

physicsworld.com

Invisible Particles

• Mott formula for the Seebeck coefficient:

Application: From Micro Watts to Giga Watts

Vehicles

Power Plants

Power and Cost Example

Dimensions of TE elements: 1.5mm x 1.5 mm x 1.6 mm

- □ Material cost per power output ≈ 0.1 \$/Watt
- **Cost of TE material can be small relative to total system cost!**

Solar Energy Utilization

Solar Fuel

http://www.phschool.com/science/biology_place/biocoach/p hotosynth/overview.html

Solar Heating

http://www.global-greenhouse-warming.com/solar-hot-water.html

Solar Electricity: PV

homesolarpvpanels.com

Solar Electricity: Thermal-Mechanical

http://www.treehugger.com/Solar-Thermal-Plant-photo.jpg

MASSACHUSETT INSTITUTE OF TECHNOLOGY

Solar Hot Water Systems

http://www.freewebs.com/solarwyse/solar_tubesspecs.html

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

http://www.made-in-china.com

Solar Thermal Installed Capacity, 2009

China in 2009, total of 134 Million m² Evacuated Tubes

Solar Thermoelectric Energy Conversion

- US Patent No. 389124:
 E. Weston in 1888
- M. Telkes, JAP, 765, 1954

Efficiency: 0.63%

Heat Flux Consideration

$$q = k \frac{\Delta T}{L} \approx 1 \frac{W}{m * K} \frac{100 \text{ K}}{L}$$

q=1000 W/m² (1 Sun); L=100 mm q=100,000 W/m² (100 Sun); L=1 mm

Possible Configurations

Thermal Concentration

Solar Thermoelectric Power Conversion

Kraemer et al., Nature Materials, 10, 523, 2011

Cascaded/Segmented STEGs

ngineering Group

Skutterudites

Key Challenges in Devices

- Diffusion barriers
- Bonding strength
- Thermal stress
- Electrical contact resistance
- Thermal contact resistance

Summary

- Contra-properties in ZT: great challenges in understanding electron and phonon transport,
- Nanostructures provide new knobs to improve ZT, and significant progresses have been made in materials,
- Thermoelectric devices raise new challenges: thermal, mechanical, and electrical coupling,
- Ample room in system innovation, taking existing materials into real world.

Acknowledgments

AFOSR MURI MITEI MIT-CCWC DOE Sunshot

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER

All S3TEC Members

Olivier Delaire Gene Fitzgerald Group Keith Nelson Group David Singh Group

• Collaborators (Partial List)

C.M. Ho, M.S. Dresselhaus, J. Lienhard, K. Nelson, Z.F. Ren, X. Zhang

• Past Members (Partial List)

Z. Chen C. Dames T. Borca-Tasciuc H.P. Feng C. Hin Q. Hao A. Henry L. Hu H. Lee M.S. Jeng A. Marverokafalos A. Muto T.F. Luo A. Schmidt S. Shen S.G. Volz B. Yang R.G. Yang M. Zebarjadi

M. Chiesa D. Borca-Tasciuc K. Esfarjani F. Hashemi C.T. Harris S.E. Han A. Jacquot R. Kumar A. Minnich W.L. Liu A. Narayanaswamy D. Song D. Vashaee D.-J. Yao

