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• In the next few 
lectures we’ll look at 
the interaction of 
electrons with the 
surrounding media, 
specifically photons 
and phonons
• To begin with, 
consider the following 
question: “Why does 
an atom emit light?”

• Recall, original 
motivation for the 
Schrödinger came 
from light emission 
(Hydrogen Gas 
Spectra)

Light Emission
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• So what makes the 
electron to emit light when 
it drops from a higher level 
of energy to a lower one?
• Notice that although the 
behavior of electrons is 
described by the 
Schrödinger equation, the 
equation as it stands does 
not predict the emission of 
light by an electron. 
• To see this, let’s look at 
the matrix version of 
Schrödinger equation 
describing our simple 
molecule with two levels 
(Next page):
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• Suppose we only had 
these two levels, and we’d 
use these two states as our 
basis functions to describe 
the wave function, then the  
the Schrödinger equation 
would become a 2  2 matrix 
equation of the form:

Basis Functions
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• This system evolves in time as

such that the probability remains unchanged.

• Therefore, following the Schrödinger equation 
in this form, an electron should not “fall” from a 
higher energy state to a lower energy state but it 
will remain there indefinitely. How ever all of us 
know that if we put an electron in a high state, it 
will emit light and go to a lower state. So what is 
happening?
• There are two ways to answer this. The first is 
simpler to understand, how ever it has some 
conceptual problems. 
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• What causes an electron to drop 
down even at absolute zero? People 
say that it is due to electromagnetic 
noise or zero-point fluctuations which 
effectively tickle an electron into a 
lower energy state.  But this requires a 
Hamiltonian which is 
NON Hermition.

• Why Non-Hermition?
We must add off-diagonal terms 
[US]12 and [US]21 to the Schrödinger 
equation

such that [US]12 ≠ 0 and [US]21 = 0 at 
0K and for T>0K, [US]12 > [US]21

Note: At temperature greater than 
absolute zero other interactions 
beyond zero-point fluctuations also 
contribute to [US]12 and [US]21
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Electron Tickling
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• Why is it that [US]12 > [US]21 at all 
temperatures? A: This inequality 
guarantees that the number of 
downward transitions will always 
exceed the number of upward 
transitions which is a sound physical 
argument.

• To formalize, let the rate at which 
electrons go from level 2 to level 1, 
S2 1, be some constant, K2 1, times a 
product of the Fermi functions
S2 1 = K2 1 f2 (1 – f1)

• Similarly, the rate from level 1 to 
level 2 may be represented as

S1 2 = K1 2 f1 (1 – f2)

• At equilibrium these two rates must 
be equal, hence
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• Continuing our derivation of K1 2 / K2 1 
…

and at T=0 this expression equals 0 so the 
electron wants to jump from 1 to 2 but not 
from 2 to 1.

• Main point: At any temperature 
the rate at which electrons move 
from 2 to 1 is much greater than 
the rate from 1 to 2

• At the beginning of the last 
century, Einstein successfully  
argued that if the number of 
photons present is n then the 
number of downward transitions 
is proportional to (n + 1) and the 
number of upward transitions to 
n:

K2 1 = K(n + 1) and 
K1 2 = Kn
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• Where for the transition rates
K2 1 = K(n + 1) and
K1 2 = Kn
n is given by the Bose-Einstein factor

Note that

showing that the Bose-Einstein 
factors demonstrate the same 
proportionality as the Fermi 
functions of levels 1 and 2

• Of course we expect the rate of 
downward transitions to exceed that of 
upward transitions such that at 
equilibrium lower energy states are 
more likely to be occupied than higher 
energy states.  Perhaps the most 
satisfactory explanation of this fact lies 
in what is known as the many-particle
viewpoint
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• An electron interacting with 
multiple photons may be 
viewed as one big many-
particle system with a single 
wave function:

Ψ = ψ⊗Φ
where ψ is the electron 
wavefunction convolved with  
photon wavefunction Φ

• This system has an infinite 
number of electron-photon 
states.  The first four are 
shown in the following 
diagram

First Four Electron-Photon States
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• In general we can right a Schrödinger Equation including both electrons and 
photons
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…with coupling HN+1,N, HN,N+1, HN,N-1, HN-1,N
between adjacent levels

• This gives an overall 
Schrödinger
Equation:

Note: Each of Ψ0, Ψ1, Ψ2, etc. has 
two components (one for level 1 
and one for level 2)
• Solving this equation we can get 
the basis functions of the 
electron-photon Hilbert space
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• So what happens when we put 
an electron in a state at T=0?
• Case 1: Put an electron in the 
ε2 level.  Due to electron-photon 
coupling it wants to make the 
transition over to the 1-photon 
subspace, that is the degenerate 
adjacent level ε1 + ħω. So the 
whole process of emission 
becomes a transfer between two 
states with the same energy.

• Case 2: Put an electron in the ε1 level.  
Here the electron can’t move because it 
has no degenerate or lower states to go to.  
At T=0 it will stay there forever.

Electrons at T=0 in ε2 and ε1 states

Case 1

Case 2
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• We can now see why an electron 
in an upper state emits light.  The 
process of emission may be 
viewed as a transition between 
two states of the same energy, the 
electron goes from ε2 to ε1 and the 
photon subspace increases by 
one

• But if this was all there was to it, 
the Schrödinger equation would 
dictate a cycle such that the 
electron continuously emits and 
absorbs photons

Continuous Emission and Absorption 
Cycle
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• But because adjacent levels 
function much like a contact, in 
the real world our photon is 
released and dissipated.  End 
result: the electron-photon multi-
particle falls down from ε1 + ħw to 
ε1

Real World Emission
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• This effect is just like the dissipation of 
an electron into an infinite reservoir.  And 
again in numerical simulation recurrence 
is limited by i0+

Real World
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• The general multiparticle picture around the N-photon subspace relates to the 
single particle picture as…

• Where the dotted arrows in the above diagram show the equivalent level 
couplings in both representations. 
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• Note: At zero temperature all the action 
happens in the 0-photon subspace and at 
higher temperatures it occurs in some 
positive integer n-photon subspace found by 
the proper Bose-Einstein Factor

• How does this formalism relate to the 
original device picture? A: Typically the 
device lies some N-photon subspace, the 
adjacent N-1 and N+1 subspaces are 
treated as contacts with their own self-
energy and coupling
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• Next Lecture:  Look at the coupling constants Knm between 
levels

• Final Comment:  As we have seen, not everything in quantum 
mechanics follows from Schrödinger’s equation – take for 
example the Fermi function.  One might imagine that the 
Schrödinger equation is incomplete, but in fact it is not.  To 
reach the same results as those given by the Fermi function and 
other such approximations we must solve a gigantic 
multiparticle Schrödinger equation.  This, for most practical 
problems, is almost, if not completely, impossible.
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