Outline

• Motivation
• My Background and Research
• Topics for This Class
• Goals for This Class
• Assignments
• Grading
Motivation for This Class

- Teach new investigators how to use computers to achieve their research goals
- “The purpose of computing is insight, not numbers!” – Richard W. Hamming

RW Hamming (left), developing error-correcting codes (AT&T)
My Background

• All degrees in Physics
• Began with Bachelor’s at UNC: undergrad research simulating molecular electrostatics
• Continued with Master’s at Cambridge University: linear photonic bandstructures
• Completed Ph.D. at MIT on active materials in photonic crystals (Advisor: JD Joannopoulos)
• Continued with postdoc on applications in photovoltaics & thermophotovoltaics (Advisor: M Soljacic)
My Research

Key areas:

- Photovoltaics
- Thermophotovoltaics
- Nonlinear optical combs
Light Management in Photovoltaics

- **Wafer cell**
 - Glass
 - Silicon
 - Aluminum
 - Absorbed
 - 200 μm

- **Si thin film**
 - Absorbed
 - 2 μm
 - Lost energy

- **PhC thin film**
 - Absorbed
 - 2 μm

1/7/2013 ECE 595, Prof. Bermel
Thermophotovoltaics (TPV) Enables Unique Energy Systems

µTPV portable power generator*

Solar TPV utility scale electricity†

RTPV for long, remote missions‡

Higher-Harmonic Generation (HHG) with Nonlinear Optical Combs

\[
\frac{da_i}{dt} = -i\omega_i a_i + K_{ijkl} e^{i(\omega_k + \omega_l - \omega_i - \omega_j)t} a_j^\dagger a_k a_l
\]

Here, a high figure of merit for the resonators increase effective coupling for more efficient HHG.
Topics Covered In This Class
Computational Complexity

• Study of the complexity of algorithms
• Based on Turing machines
• Often, one compares algorithms for best scaling in large problems

Alan Turing (from University of Calgary Centenary event)
Eigenproblems

• Generalized eigenproblem: \(Ax = \lambda Bx \)
• Solution method will depend on properties of \(A \) and \(B \)
• Techniques have greatly varying computational complexity
• Sometimes, full solution is unnecessary
Crystal Bandstructures

- Periodic (crystalline) media
 - Periodic atoms: semiconductors with electronic bandgaps
 - Periodic dielectrics: photonic crystals with photonic bandgaps
- Many potential applications for both

Joannopoulos et al., *Photonic Crystals* (2008)
Discrete Fourier Transforms

- DFT defined by:
 \[F(n) = \sum_{i=1}^{N} f(x_i) e^{-2\pi j (x_i n / x_N)} \]
- Naïve approach treats each frequency individually
- Can combine operations together for significant speed-up (e.g., Cooley-Tukey algorithm)
- Specialized algorithms depending on data type
Finite-Element Methods

- For 2D or 3D problems, divide space into a mesh
- Solve a wide array of partial differential equations – well suited for multiphysics problems
Finite-Difference Time Domain

- Discretize space and time on a Yee lattice
- “Leapfrog” time evolution of Maxwell’s equations:

 \[
 \frac{dB}{dt} = -\nabla \times \vec{E} - J_B - \sigma_B B
 \]

 \[
 \frac{dD}{dt} = \nabla \times \vec{H} - \vec{J} - \sigma_D D
 \]

 \[D = \varepsilon E\]

 \[H = B / \mu\]

- Implemented in MEEP:
 nanohub.org/topics/MEEP
Transfer Matrices and Rigorous Coupled Wave Analysis

• Divide space into layers for efficiency
• For uniform layers – transfer matrix approach
• For periodic gratings or similar in certain layers – RCWA

From the CAvity Modeling FRamework (CAMFR)
Goals for This Class

• Learn/review key mathematics
• Learn widely-used numerical techniques just discussed
• Become a capable user of software utilizing these techniques
• Appreciate strengths and weaknesses of competing algorithms; learn how to evaluate the results
• Convey your research results to an audience of your new colleagues
Key Policies

• Textbooks:
 – Salah Obayya, “Computational Photonics”
 – JD Joannopoulos et al., “Photonic Crystals”

• Communication:
 – Course website: http://web.ics.purdue.edu/~pbermel/ece595/
 – nanoHUB group: https://nanohub.org/groups/ece595
 – Email: pbermel@purdue.edu

• Full list of policies given on handout; also available under Syllabus on Blackboard
Quizzes

• Will periodically questions online about the lecture
• Should be after videos are posted
• No trick questions – just designed to make sure you’re keeping up with the material
Class Participation

• Your attendance is important
• Will be grading your involvement, enthusiasm, and respect for your peers in the class
• **Not** grading your percentage of correct answers during class
Homework

• Homework is essential to learn the material
• 8 total homework assignments this semester, once every other week
 – First one will be available Jan. 11, due Jan. 18
 – Two weeks in a row before Spring Break
• Due at 4:30 pm on the listed dates to pbermel@purdue.edu
Final Project

• Chance for you to teach the rest of the class about a numerical computing topic that interests you!
• OK to pick something related to your research as long as it’s new
• I can suggest topics if you’re not sure what to do
• Can ask peers for general advice but all details and presentations should be done by you
Grading

<table>
<thead>
<tr>
<th>Grading Item</th>
<th>Points</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>100</td>
<td>Various</td>
</tr>
<tr>
<td>Class Participation</td>
<td>100</td>
<td>All Semester</td>
</tr>
<tr>
<td>Homework</td>
<td>100</td>
<td>Every Other Week</td>
</tr>
<tr>
<td>Final Project</td>
<td>200</td>
<td>End of Semester</td>
</tr>
<tr>
<td>TOTAL</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

- Numerical grades of 60% or above will pass
- Roughly speaking: A’s will be 90% +; B’s 80-89%; C’s 70-79%
- Final letter grades will be assigned at my discretion
Next Class

• Discussion of specific goals for numerical computing
• Please read Obayya, Chapter 1