Outline

• Recap from Monday
• Overview: Computational Linear Algebra
• Gaussian Elimination
• LU Decomposition
• Singular Value Decomposition
• Sparse Matrices
• QR Decomposition
Recap from Monday

- \(P \subseteq NP \subseteq \bigcup_{c \geq 1} \text{DTIME}(2^{n^c}) \)

- **NP-complete problems:**
 - Can be Karp-reduced (via Cook-Levin theorem) to hardest general problem in Conjunctive Normal Form: SAT
 - Only soluble in polynomial time if \(P=NP \)

- **Unknown whether \(P=NP \)**
 - If not, some problems will remain quite difficult: can use heuristics to compensate
 - If so, impressive applications may be possible
Overview: Computational Linear Algebra

- Broadly speaking: the solution of matrix problems, such as $A \cdot x = b$ or A^{-1}
- Unique solutions not always guaranteed
 - May have mismatch of equations & unknowns
 - Possible degeneracy (aka singularity)
 - Near degeneracies \rightarrow large round-off errors
- On the other end of the spectrum, some special features can help
 - Sparse values
 - Banded diagonals
Gauss-Jordan Elimination: No Pivoting

• Based on transforming $A \cdot x = b$ to $x = A^{-1}b$

• Without pivoting:
 – Normalize element on diagonal to unity
 – Subtract later columns

• Potential problems:
 – Element on diagonal is zero
 – Element on diagonal is near zero
Gauss-Jordan Elimination: Pivoting

- Pivoting allows one more flexibility
 - Interchange rows (partial pivoting)
 - Interchange rows and columns (full pivoting)
- Goal: put biggest element on diagonal
- Caveat: some (artificial?) exceptions
- Solution: implicit pivoting
Gaussian Elimination

• Reduce original matrix to partially empty (e.g., on lower left) – to be called U

$$
\begin{bmatrix}
 a'_{11} & a'_{12} & a'_{13} & a'_{14} \\
 0 & a'_{22} & a'_{23} & a'_{24} \\
 0 & 0 & a'_{33} & a'_{34} \\
 0 & 0 & 0 & a'_{44}
\end{bmatrix}
\cdot
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{bmatrix}
=
\begin{bmatrix}
 b'_1 \\
 b'_2 \\
 b'_3 \\
 b'_4
\end{bmatrix}
$$

• Perform backsubstitution to find the solution:

$$
x_i = \frac{1}{a'_i} \left[b'_i - \sum_{j=i+1}^{N} a'_{ij} x_j \right]
$$
LU Decomposition

• Rewrite input matrix A as a product of lower-triangular and upper-triangular matrices, i.e.,

$$
\begin{bmatrix}
\alpha_{11} & 0 & 0 & 0 \\
\alpha_{21} & \alpha_{22} & 0 & 0 \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & 0 \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}
\end{bmatrix} \cdot
\begin{bmatrix}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
0 & \beta_{22} & \beta_{23} & \beta_{24} \\
0 & 0 & \beta_{33} & \beta_{34} \\
0 & 0 & 0 & \beta_{44}
\end{bmatrix} =
\begin{bmatrix}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}
\end{bmatrix}
$$

• Then solve with $L \cdot y = b$ (forward substitution)

$$
y_i = \frac{1}{\alpha_{ii}} \left[b_i - \sum_{j=1}^{i-1} \alpha_{ij} y_j \right]
$$

• Finally, solve via $U \cdot x = y$ (backsubstitution)

$$
x_i = \frac{1}{\beta_{ii}} \left[y_i - \sum_{j=i+1}^{N} \beta_{ij} x_j \right]
$$
LU Decomposition

- To construct the LU matrices, use Crout’s algorithm to compute the decomposition in place:

\[\beta_{ij} = a_{ij} - \sum_{k=1}^{i-1} \alpha_{ik}\beta_{kj} \]

\[\alpha_{ij} = \frac{1}{\beta_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} \alpha_{ik}\beta_{kj} \right) \]

\[
\begin{bmatrix}
\beta_{11} & \beta_{12} & \beta_{13} & \beta_{14} \\
\alpha_{21} & \beta_{22} & \beta_{23} & \beta_{24} \\
\alpha_{31} & \alpha_{32} & \beta_{33} & \beta_{34} \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \beta_{44}
\end{bmatrix}
\]
LU Decomposition

• Execution time:
 – total number of elements computed: N^2
 – Total number of operations per element (average): $N/3$

• Inversion: backsubstitute after factorization

• Determinant of an LU factorization:

$$\det = \prod_{j=1}^{N} \beta_{jj}$$
Band Diagonal Matrices

• Band diagonal means only k diagonals are non-zero

• Common special case: tridiagonal:

\[
\begin{bmatrix}
 b_1 & c_1 & 0 & \cdots & \\
 a_2 & b_2 & c_2 & \cdots & \\
 \vdots & \ddots & \ddots & \ddots & \vdots \\
 \vdots & & \ddots & \ddots & \ddots \\
 \cdots & \cdots & \cdots & a_{N-1} & b_{N-1} & c_{N-1} \\
 \cdots & \cdots & \cdots & 0 & a_N & c_N \\
 \cdots & \cdots & \cdots & \cdots & 0 & a_N
\end{bmatrix}
\begin{bmatrix}
 u_1 \\
 u_2 \\
 \vdots \\
 \vdots \\
 u_{N-1} \\
 u_N
\end{bmatrix} =
\begin{bmatrix}
 r_1 \\
 r_2 \\
 \vdots \\
 \vdots \\
 r_{N-1} \\
 r_N
\end{bmatrix}
\]

• Can perform LU decomposition in kN operations
Iterative Improvement

• If our exact solution is $A \cdot x = b$
• And we already have $A \cdot x' = b'$
• Then since $A \cdot x' - A \cdot x = b' - b$
• We can subtract $A^{-1}(b' - b)$ from x'
• Can repeat until reach limits of precision
• This can be formalized and used to devise certain useful guesses for our starting point b'
Singular Value Decomposition

• Based on theorem: any matrix \(A = U \cdot W \cdot V^T \), where:

\[
\begin{pmatrix}
\mathbf{A} \\
\end{pmatrix} = \begin{pmatrix}
\mathbf{U} \\
\end{pmatrix} \begin{pmatrix}
\begin{pmatrix}
w_1 \\
w_2 \\
\vdots \\
w_N \\
\end{pmatrix} \cdot \begin{pmatrix}
V^T \\
\end{pmatrix}
\end{pmatrix}
\]

• \(U \) and \(V \) are both orthogonal: \(U^T U = 1; V^T V = 1 \)

• Inversion is easy: \(A^{-1} = V \cdot \frac{1}{W} \cdot U^T \)

• Condition number is set by \(\max w_j/\min w_j \); difficult to work with large values
Sparse Linear Systems

- Band diagonal
- Block triangular
- Block tridiagonal
- Single-bordered block diagonal
- Double-bordered block diagonal
- Single-bordered block triangular
- Bordered band-triangular
- Single-bordered band diagonal
- Double-bordered band diagonal
- Other
Vandermonde Matrices

To solve the problem of moments, construct Vandermonde matrices which look like:

\[
\begin{bmatrix}
1 & x_1 & x_1^2 & \cdots & x_1^{N-1} \\
1 & x_2 & x_2^2 & \cdots & x_2^{N-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_N & x_N^2 & \cdots & x_N^{N-1}
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_N
\end{bmatrix}
=
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{bmatrix}
\]
Cholesky Decomposition

• Can be thought of as taking the square root of a matrix A, such that $A = LL^T$

• Writing out explicitly yields following equations:

$$L_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} L_{ik}^2 \right)^{1/2}$$

$$L_{ji} = \frac{1}{L_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} L_{ik}L_{jk} \right)$$
QR Decomposition

- Write $A = Q \cdot R$, where $Q^T Q = 1$, and R is upper triangular
- Can then solve $R \cdot x = Q^T b$
- Matrix from a series of Householder transformation, s.t. $Q = \prod_i Q_i$
 - each $Q_i = 1 - 2w \cdot w^T$
 - Choose vector w to eliminate off-diagonal entries in one row + one column
Next Class

• Discussion of root finding and optimization
• Please read Chapter 10 of “Numerical Recipes” by W.H. Press et al.