

ECE695A: Reliability Physics of Nano-Transistors Lecture 6: Defects in the Bulk and at Interfaces

Muhammad Ashraful Alam alam@purdue.edu

Copyright 2013

This material is copyrighted by M.Alam under the following creative commons license:

Attribution-NonCommercial-ShareAlike 2.5 Generic (CC BY-NC-SA 2.5)

Conditions for using these materials is described at

http://creativecommons.org/licenses/by-nc-sa/2.5/

Outline of lecture 6

- I. Strain in materials/origin of defects
- 2. Examples: bulk defects
- 3. Examples: interface defects
- 4. Measurements
- 5. Conclusions

Meaning of an oxide/nitride defect

Origin of defects and Maxwell constraints

Dimensionality Points to be stabilized Constraints $M_0 = DN - N_c - (D + \alpha)$

$$N \equiv \sum_{r=1}^{k} n_r$$
 Types of atoms with different coordination Number of atoms with coordination r

$$N_{c} \equiv \left[\sum_{r=1}^{k} n_{r} \frac{r}{2}\right]_{bond} + \left[\sum_{r=1}^{k} n_{r} \frac{(D-1)}{2} (2r-D)\right]_{angle}$$

 $M_0 > 0$ unstable, $M_0 < 0$ stable

Example 4: 3D constraints for binary solids

$$N_{c} \equiv \left[\sum_{r=1}^{k} n_{r} \frac{r}{2}\right]_{bond} + \left[\sum_{r=1}^{k} n_{r} \frac{(D-1)}{2} (2r-D)\right]_{angle}$$

Average Si coordination ... $\langle N_{c,1} \rangle$ Average O coordination ... $\langle N_{c,2} \rangle$

Average coordination ...
$$\langle N_c^{A_x B_{1-x}} \rangle = x \langle N_c^A \rangle + (1-x) \langle N_c^B \rangle$$

Example 4: at what value of x is SiO strain-free?

$$\frac{M_0}{N} \approx 3 - x \left[\frac{\langle N_c^{Si} \rangle}{2} + (2\langle N_c^{Si} \rangle - 3) \right] - (1 - x) \left[\frac{\langle N_c^0 \rangle}{2} + 0 \right]$$

$$= 3 - x \left[\frac{4}{2} + (2 \times 4 - 3) \right] - (1 - x) \times \frac{2}{2}$$

$$0 \Rightarrow 7x + (1 - x) = 3 \quad x = \frac{1}{3}$$

$$Si_{1/3}O_{1-1/3} = SiO_2 \quad \text{stress-free optimally coordinated!}$$

$$\langle N_c^{SiO_2} \rangle = 0.33 * \langle N_c^{Si} \rangle + 0.66 * \langle N_c^{O} \rangle$$

= 2.64

A very important number that arises in all good 3D 'glass formers'

Example 2: Is Si₃N₄ optimally coordinated?

$$\frac{M_0}{N} \approx 3 - x \left[\frac{\langle N_c^{Si} \rangle}{2} + (2\langle N_c^{Si} \rangle - 3) \right] - (1 - x) \left[\frac{\langle N_c^0 \rangle}{2} + 0 \right]$$

$$= 3 - \left\{ \frac{3}{(3+4)} \left[\frac{4}{2} + (2 \times 4 - 3) \right] + \frac{4}{(4+3)} \times \frac{3}{2} \right\}$$

$$= -0.8571$$

J.C. Phillips, 1979.
Thorpe, 1982.

Silicon nitride is over coordinated, therefore prone to defect formation

Average coordination
$$\left\langle N_c^{Si_3N_4} \right\rangle = \frac{3}{7} \left\langle N_c^{Si} \right\rangle + \frac{4}{7} \left\langle N_c^N \right\rangle = \frac{24}{7} = 3.42$$

Probability of defect formation:
$$D \propto (\Delta \theta)^2 \sim (N_c - N_c^*)^2$$

Example: what about HfO₂?

$$\frac{M_0}{N} \approx 3 - x \left[\frac{\langle N_c^{Hf} \rangle}{2} + (2\langle N_c^{Hf} \rangle - 3) \right] - (1 - x) \left[\frac{\langle N_c^0 \rangle}{2} + 0 \right]$$

$$= 3 - \left\{ \frac{1}{(1+2)} \left[\frac{8}{2} + (2 \times 8 - 3) \right] + \frac{2}{(1+2)} \times \frac{4}{2} \right\}$$

$$= -4$$

HfO2 is over coordinated, therefore prone to defect formation

Average coordination
$$\left\langle N_c^{HfO_2} \right\rangle = \frac{1}{3} \left\langle N_c^{Hf} \right\rangle + \frac{2}{3} \left\langle N_c^{O} \right\rangle = \frac{16}{3} = 5.33$$

Probability of defect formation:

$$N_{\text{Defects}} \sim (N_c - N_c^*)^2$$

Outline

- I. Strain in materials/origin of defects
- 2. Examples: bulk defects
- 3. Examples: interface defects
- 4. Measurements
- 5. Conclusions

Meaning of an oxide/nitride defect

Defects in a-Si (coordination defects)

Far fewer types of defects compared to crystalline materials ...

Examples: a-Si vs. a-Si:H

Ex. Is a - Si optimally coordinated?

$$\frac{M_0}{N} \approx 3 - \left[\frac{\langle N_c^{Si} \rangle}{2} + (2\langle N_c^{Si} \rangle - 3) \right]$$
$$= 3 - \left\{ \frac{4}{2} + (2 \times 4 - 3) \right\} = -4.$$

A-Si is highly overcoordinated, prone to defect formation

R.C. Street, Hydrogenated a-Si, p. 39.

Ex. At what value of x, is $Si_x H_{1-x}$ optimally coordinated?

$$\frac{M_0}{N} \approx 3 - x \left[\frac{\langle N_c^{Si} \rangle}{2} + (2\langle N_c^{Si} \rangle - 3) \right] + (1 - x) \frac{\langle N_c^H \rangle}{2}$$

$$= 3 - x \left[\frac{4}{2} + (2 \times 4 - 3) \right] + (1 - x) \frac{1}{2} \qquad 0 \Rightarrow 7x + (1 - x)/2 = 3 \quad x = \frac{2.5}{6.5} = 40\%$$

$$\langle N_c^{SiH} \rangle = 0.9 \langle N_c^{Si} \rangle + 0.1 \langle N_c^H \rangle = 3.7$$

Crystalline vs. amorphous oxides

NY Times, July 29, 2008.

Purple: Nickel oxide

Blue: Cobalt oxide

Yellow/blue-green: Iron oxide

Cherry Red: Gold oxide

Bulk defects E' center

Courtesy: Prof. Lenahan

Responsible for gate dielectric breakdown as well as trapped charges

Bulk defects of missing Oxygen: E', K, and P defects

Courtesy: Prof. Lenahan

Responsible for gate dielectric breakdown

Outline of lecture 6

- I. Strain in materials/origin of defects
- 2. Examples: bulk defects
- 3. Examples: interface defects
- 4. Measurements
- 5. Conclusions

Surface reconstruction

C-V Stretchout, interface defects, and Andy Grove

Forming gas anneal

Example: Si/SiO2 interface is strained

Consider I monolayer of Si/SiO2 at the interface (0.5 monolayers of each: 0.5 atoms of Si/I.5 atoms of SiO2)

(I) Silicon is highly over-coordinated, because ...

$$Si \rightarrow 0.5 \times N_{Si} = 0.5 \times 4 = 2$$
 bonds.

Average bonds = 2 bonds/0.5 = 4

(2) SiO2 is optimally coordinated ...

$$SiO_2 \rightarrow 1.5 \times (0.33 \times 4 + 0.66 \times 2) = 4$$
 bonds.

Average bonds \rightarrow 4 bonds/1.5 atoms = 2.66

Average coordination at the interface

$$\rightarrow$$
 (4+2) bonds/(1.5 atoms+0.5 atoms) = 3.

SiO2

Hydrogenation improves Si/SiO2 interface

Consider I monolayer of Si_{0.9}H_{0.1}/SiO₂ at the interface

(0.5 monolayers of each: 0.5+0.05 atoms of Si and H/I.5 atoms of SiO2)

(4) SiH/SiO2 is relaxed, with reduced defect density

$$Si_{0.9}H_{0.1} \rightarrow 0.55 \times (0.9N_{Si} + 0.1N_H) = 2.03$$
 bonds.

$$SiO_2 \rightarrow 1.5 \times (0.33 \times 4 + 0.66 \times 2) = 4$$
 bonds.

$$\rightarrow$$
 6.03 bonds/(1.5 atoms+0.55 atoms) = 2.94

To conclude, defects at interface SiO2 < SiH-SiO₂ < Si-SiO₂ < Si

SiO2

Pb centers – interface traps

Of Pa, Pb, Pc -- only Pb survives Related to NBTI degradation

[III] surface
P_b along [III]

Stirling, PRL, 2000.

[100] surface Pb₀ along [111]

[100] surface Pb₁ along [211]

Outline

- I. Strain in materials/origin of defects
- 2. Examples: bulk defects
- 3. Examples: interface defects
- 4. Measurements
- 5. Conclusions

Electron spin resonance: a 'microscope' for defects

B-value suggests local environment

Nonbridgi

Different types of ESR-visible defects

Helms and Poindexter, 1994.

ESR signature of different defects

P. M. Lenahan, 2004.

Pb parallel and perpendicular to <111>

ESR invisible defects (negative U traps)

Paramagnetic materials may appear diamagnetic

$$2D_0 + (E_1 - E_2) = D^+ + D^-$$

$$2D_0 + (E_1 - E_2) - U_{e-h} = D^+ + D^-$$

Like superconductivity with phonon assisted e-e attraction

Conclusions

- ☐ Maxwell relationship anticipates bulk and interface defects as a consequence of excessive coordination. In SiO2, bulk defects are called E' centers and at the Si/SiO2 interface, interface defects are called Pb centers.
- The theory also explains how small atoms like H relaxes the structure and reduces defect density.
- Determining the precise number of angle constraints is sometime difficult. If the angle are very floppy, we assign the constraint to zero as an initial guess.
- ☐ Electron spin resonance (ESR) techniques are often used to determine types of defects in a systems. There are ESR-invisible many body defects that can be detected by other methods.

References

- A. Stirling et al., Dangling bond defects at Si-SiO2 interfaces: Atomic structure of the PbI center, PRL, 85(13), p. 2773, 2000.
- A. Bongiorno, Transition structure at the Si(100)-SiO2 Interface, 18, 186101, 2003.
- A nice review by C. R. Helms and E. H. Poindexter, "The silicon-silicon dioxide system: its microstructure and imperfections," Rep Prog Phys 57 791-852, 1994. P.M. Lenahan is well known for his work on defect characterization by ESR For example see his chapter in "Defects in Microelectronic Materials and Devices" edited by Fleetwood, 2004.
- First-Principles Investigations of Low Energy E' center Precursors in Amorphous Silica, PRL, 106, 206402, 2011 provides a sophisticated MD-DFT perspective of these defects. Another review by J. Robertson, "Interfaces and defects of high-K oxides on Slicon, Solid State Electronics, 49, 283,2005.

Review questions

- GI: Why do we not account for angle constraint in for oxygen in SiO2?
- G2: Explain why amorphous structures actually have fewer types of defects
- G3: If you needed to calculate HfO2/SiO2 interface properties How many monolayers of atoms should you consider in HfO2 side?
- G4: What is the difference between a Pb center and E' center?
- G5: Support the statement that "Hydrogen incorporation in c-Si makes the structure amorphous".
- G6: 10.4 GHz doublets and 74GHz doublet indicates the backbonding of which atom?
- G7: Name a technique other than ESR that might be used to characterize defects?
- G8: Why is negative U traps invisible to ESR?