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Outline of lecture 6

. Strain in materials/origin of defects

Examples: bulk defects

Examples: interface defects
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Meaning of an oxide/nitride defect




Origin of defects and Maxwell constraints

Dimensionality =~ Points to be stabilized

l / . Constraints

M,=DN—-N_—(D+a)

N =

r
r=1 T~ Number of atoms with coordination r

N = {Zk:n ﬂ " {Zk:n (Dz_l)(zr - D)}

r=1 angle

M, >0 unstable, M, <0 stable
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Example 4: 3D constraints for binary solids

Nc{zk:nrﬂ {Zn (B-1) 2r—D)}

r=1

angle
(] o
® °2v . Q} o "A? -
T ‘{.:. D - ) J,:.’;"
S &’3’ d° |.C Phillips, 1979.
e Thorpe, 1982.

NC(Si)=<N2C’l>} +<2<Nc,1>—3)]9 NC(O)—<N2C’2>}0

ik
ri.

Average Si coordination ... <NC,1> Average O coordination ... <Nc,2>

Average coordination ... <N AErox > <N A>+(1 X)<N B>



Example 4: at what value of x is SiO strain-free?

NS -
< 2f>+(2<|\|§'>—3) ~(1-x)

%zS—X
N

4 2
:3_X[§+(ZX4_3)}_(1_X)XE

0=7x+(1-x)=3 x:%

Si50, 43 = SI0,  stress - free optimally coordianted! -

<N§‘02>= 0.33*<N§‘>+o.66*<|\|g’>
—2.64

A very important number that arises in all good 3D ‘glass formers’
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Example 2: |Is Si;N, optimally coordinated?

J.C. Phillips, 1979.

Si 0 Thorpe, 1982.
I\/IO NC Si NC O™
Wzs;-{< 2 >+(2<NC >—3)}—(1—x){%+0} ’

:3—{ 3 [)%JF(ZXA'_B)}F 4 xg}
(3+4 (4+3) 2

=—-0.8571

Silicon nitride is over coordinated,
therefore prone to defect formation

Average coordination ..... <Nfi3N“ > = §< N> > +£< N, > = % =3.42

Probability of defect formation: D oc (Aé?)2 ~ (N, —=N,)?
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Example: what about HfO,?

+(2<NCHf>—3)}—(1—x){<N2CO>+O} 4

NN Lo

:3—{L[§+(2x8—3)}+ 2 xﬂ}
(1+2)| 2 1+2) 2

Probability of defect formation: Nperecss ~ (N, - N:)Z
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Meaning of an oxide/nitride defect




Defects in a-Si (coordination defects)

O O O O -
O—CO Vacancy O Coordination
defect
O O ,,h O
o
O—0F+0—o0
Interstitial
Coordinatton
® ¢
© -
O 1

Far fewer types of defects compared to crystalline materials ...
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Examples: a-Si vs. a-Si:H

Ex.Isa-Sioptimally coordinated? R.C. Street, Hydrogenated
S a-5,p.39.
M, ~3— < N > +(2 < N > —3)
N 2

=3—{%+(2x4—3)}:—4.

A-Si is highly overcoordinated , prone to defect formation

Ex. At what value of x,is Si H, optimally coordinated?

I\/Io _<NCSi> Si <NCH>
—0 23— x| L (2(NS)=3) |+ (- x) =L
v S+ 2(N)=3) [+ (1-x)
[ 4 1 2.5 0
=3—X E+(2X4—3):|+(1—X)E 0:>7X+(1—X)/2:3 X:E:LI-OA)

Typically 10% H <NfiH>:O.9<Nfi>+0.1<NCH>:3.7



Crystalline vs. amorphous oxides

Glass, Up Close

CRYSTALLINE S0LIDS
Quartz, a solid, has
the same chemical
formula as pure
silica glass (SiOy).

o

»
-l'&'.'&

»

STRUCTURE = -
The molecules are the

same, but they are lined

up next to each otherin a
simple repeating pattern that
extends through the material,
giving it a crystalline structure.

‘Glass up close’,

NYTimes,_/UIy 29’ 2008 Purple: NiCkEI OXide
Blue: Cobalt oxide

Yellow/blue-green: Iron oxide
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Courtesy:

Bulk defects E’ center Prof. Lenahan

(a) Vacancy free SiO,

Responsible for gate dielectric breakdown as well as trapped charges
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Bulk defects of missing Oxygen:

4 Courtesy:
E’, K, and P defects SV
. .g E'(10.4 Gauss Doublet) ‘ P]
Tl—.T._ E'(74 Gauss Doublet)

% 1%{

Responsible for gate dielectric breakdown
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Surface reconstruction
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C-V Stretchout, interface
defects, and Andy Grove

Forming gas anneal

L

E, | I I I Q
(®)
©

Annealed t
As oxidized >

< 7
c
@)
O

E ] ] | 1 =

Y 1010 101 1012 10'? N
D, (states/cm?-eV)
i | | | | ] |
n-type (111) Si
No H, anneal
-—— H2 anneal
bc 1.0
oy
8 08 _
=
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[ ¥}
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b
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o
E
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Example: Si/SiO2 interface is strained

Consider | monolayer of Si/SiO2 at the interface
(0.5 monolayers of each: 0.5 atoms of Si/l.5 atoms of SiO2)

(1) Silicon is highly over-coordinated, because ...
SI— 0.5x N, =0.5x4 =2 bonds. r

J -.-..;..,_ ’.

Si
Average bonds = 2 bonds/0.5 =4 = :
(2) SiO2 is optimally coordinated ... - ( j
Si0, —1.5x (0.33x 4 +0.66x 2) = 4 bonds.
Average bonds — 4 bonds/1.5 atoms = 2.66

(3) Si/SiO2 is over-coordinated, so prone to defect formation ...

Average coordination at the interface
— (4+ 2) bonds/(1.5 atoms+0.5 atoms) = 3.
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Hydrogenation improves Si/SiO2 interface

Consider | monolayer of SijyoH, ,/SiO, at the interface
(0.5 monolayers of each: 0.5+0.05 atoms of Si and H/1.5 atoms of SiO2) / SiO2

(4) SiH/SiO2 is relaxed, with reduced defect density

Si,oH,, > 0.55%x(0.9N,. +0.1IN, ) = 2.03 bonds.
SI0, - 1.5%(0.33x4+0.66x2) =4 bonds.

Average coordination
— 6.03 bonds/(1.5 atoms+0.55 atoms) =2.94

To conclude, defects at interface | A (
SiO2 < SiH-SiO, < Si-SiO, < Si
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N

Gat¢ Oxide (Si0,), amorphous
— O\
/ O\ I
...0 Vi
N /| s

LSt S S Si ..
LSS S S S S Si Si

‘ Si-Channel, crystalline ‘

Of Pa, Pb, Pc -- only Pb survives

Related to NBT| degradation

Pb centers — interface traps

[I 1] surface
P, along [ 11]

Stirling, PRL, 2000.

[100] surface
Pb, along [ 11]

[100] surface
Pb, along [21 |]
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Electron spin resonance: a ‘microscope’ for defects

E'(10.4 Gauss Doublet)

10 GHz Microwave EEEp

‘ Absorption spectra

Variable B-field )

B-value suggests
local environment

AE = g.HgBo A f hv = g.1gBy

A
T |
_x " mg=+0.5 ! Absorbance

> —

201 - s I

Q T3~ 00 ! L
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Nonbridging oxygen hole center

NBOHC
G

@ Silicon
QO Oxygen
é peroxy
P

Different types of ESR-visible defects
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Helms and Poindexter, 1 994.
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ESR signature of different defects

I\

110G

74 G doublet
L}_/ -
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Si0,
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ESR invisible defects (negative U traps)

# % Paramagnetic materials may appear diamagnetic

D,+E =D" D,—-E,=D"

A
1

O @400

3
O @300 s =
0O© 2000

N
o+

2D,+(E,—E,)=D"+D"

0 ® 000 2D, +(E,—E,)-U, ,=D* + D"

Like superconductivity with phonon assisted e-e attraction
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Conclusions

Maxwell relationship anticipates bulk and interface defects as a
consequence of excessive coordination. In SiO2, bulk defects are
called E’ centers and at the Si/SiO2 interface, interface defects are
called Pb centers.

The theory also explains how small atoms like H relaxes the
structure and reduces defect density.

Determining the precise number of angle constraints is sometime
difficult. If the angle are very floppy, we assign the constraint to
zero as an initial guess.

Electron spin resonance (ESR) techniques are often used to
determine types of defects in a systems. There are ESR-invisible
many body defects that can be detected by other methods.
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Review questions

G |: Why do we not account for angle constraint in for oxygen in SiO2?
G2: Explain why amorphous structures actually have fewer types of defects

G3: If you needed to calculate HfO2/SiO2 interface properties — How many
monolayers of atoms should you consider in HfO2 side?

G4: What is the difference between a Pb center and E’ center?

G5: Support the statement that “Hydrogen incorporation in c-Si makes the
structure amorphous”.

G6: 10.4 GHz doublets and 74GHz doublet indicates the backbonding of which
atom!

G7: Name a technique other than ESR that might be used to characterize defects!?

G8: Why is negative U traps invisible to ESR?
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